U.G. 5th Semester Examination - 2024 CHEMISTRY [HONOURS]

Course Code : CHEM-H-CC-T-11

Full Marks: 40

Time: $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:

 $2\times5=10$

- a) An octahedral complex absorbs at 432 nm. What would be its respective tetrahedral field splitting?
- b) Define stoichiometric mechanism and intimate mechanism.
- c) What is Calomel? Mention the change(s) observed when calomel is exposed to ammonia.
- Which one will cause higher Crystal Field Splitting Parameter (Δ_0) for the same ligand in the same stereochemistry: Fe²⁺ or Fe³⁺? Give reason.

- e) Work out CFSE (Crystal Field Stabilisation Energy) for a d⁶ metal ion in an octahedral complex in which 10Dq > P. [P : pairing energy]
- f) Give two examples of eight coordinated complexes of lanthanides.
- g) Calculate the magnetic moment of Gd3+ ion.
- h) Define cis-effect with example.
- 2. Answer any two questions: $5 \times 2 = 10$
 - a) i) Arrange the following oxoanions in the increasing order of oxidizing strength.
 Also write the decreasing order of the wavelength (λ) of LMCT transition of these species.

 VO_4^{3-} , CrO_4^{2-} and MnO_4^{-} .

ii) What is OSSE (Octahedral Site Stabilisation Energy)? Give example.

2+3

- b) i) Explain with reason whether Co₃O₄ exists as normal spinel or inverted spinel.
 - ii) [NiCl₄]²⁻ is tetrahedral but [PtCl₄]²⁻ is square planar although nickel and platinum belong to the same group in the periodic table. —Justify the contradiction. 3+2

- c) i) Write the steps involved in the base hydrolysis of [CoCl(NH₃)₅]²⁺.
 - ii) Differentiate between thermodynamic stability and kinetic stability. 3+2
- d) i) Give proper reason: Actinoids form oxocations more frequently than lanthanoids.
 - ii) Why metallic radii of Eu and Yb are much larger than other lanthanoids? 3+2
- 3. Answer any two questions: $10 \times 2 = 20$
 - a) i) Justify or criticise: Gr 12 elements are not considered as transition metals.
 - ii) Elucidate the fact: High spin d⁴ octahedral complexes undergo strong Jahn Teller distortion.
 - iii) Apply VBT to explain the structure and magnetic moment of Li [Ti(bpy)₃].
 - iv) Indicate proper reason: Gold is a noble metal yet it forms auride (Au⁻) ion like halogens. 3+3+2+2
 - b) i) Calculate effective magnetic moment (μ_{eff}) of $[Co(NO_2)_6]^{4-}$. Given: Spin-orbit coupling constant $(\lambda) = -515$ cm⁻¹; crystal field splitting parameter (l0Dq) = 12,000 cm⁻¹.
 - ii) Depict the structure of Cr(II) acetate and indicate its salient features like bond order, state of hybridisation, magnetic behaviour.

535/Chem.

- iii) Both V(II) and Cr(III) are d³ metal ions—justify which one is more labile?

 4+4+2
- c) i) What happens if $[PtCl_4]^{2-}$ is allowed to react (1) first with NH₃ and then with C_2H_4 , (2) first with C_2H_4 and then with NH₃.

 Write the geometries of the products.
 - ii) Compare between spectrochemical series and nephelauxetic series.
 - iii) Both Mn(II) and Fe(III) are d⁵ metal ions. Which one is more labile and why?

4+4+2

- d) i) Write the name of the processes used for purification of nickel and zirconium from respective crude metals. Write the relevant chemical equations.
 - ii) Interpret with the help of a diagram, the variation of lattice energy of +2 metal ions of 3d series in weak crystal field.
 - iii) What happens when uranyl sulphate is treated with excess of Na₂CO₃?

4+4+2