ii) Show that the vector $\vec{F} = (4xy - z^3)i + 2x^2j - 3xz^2k$ is irrotational. Show that \vec{F} can be expressed as the gradient of a scalar function ϕ .

1+4

- c) i) If $c_0 + \frac{c_1}{2} + \frac{c_2}{3} + \dots + \frac{c_n}{n+1} = 0$, where $c_i \in \mathbb{R}$ for $i = 0, 1, \dots, n$, show that the equation $c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n = 0$ has at least one real root between 0 and 1. 4
 - ii) A function $f: \mathbb{R} \to \mathbb{R}$ satisfies the condition $|f(x) f(y)| \le (x y)^2$ for all $x, y \in \mathbb{R}$. Prove that f is a constant function on \mathbb{R} .
 - iii) Prove that $\operatorname{div}\left[(\vec{r} \times \vec{a}) \times \vec{b}\right] = -2\vec{b} \cdot \vec{a}$. 3
- d) i) Obtain the Maclaurin's infinite series expansion of $(1+x)^m$, where m is any real number other than positive integer and |x| < 1.
 - ii) If $f: [0,1] \to \mathbb{R}$ is such that f''(x) < 0 in [0,1] and if $\phi(x) = f(x) + f(1-x)$ in [0,1], show that ϕ is monotone increasing in $\left[0,\frac{1}{2}\right]$ and it is monotone decreasing in $\left[\frac{1}{2},1\right]$.

U.G. 3rd Semester Examination - 2024 MATHEMATICS

[HONOURS]
Course Code: MATH-H-CC-T-05
(Theory of Real & Vector Functions)
[CBCS]

Full Marks: 60 Time: $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Symbols and notations have their usual meanings.

- 1. Answer any **ten** questions: $2 \times 10 = 20$
 - i) Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function on \mathbb{R} and f'(x) > f(x) for all $x \in \mathbb{R}$. If f(0) = 0, then show that f(x) > 0 for all $x \in \mathbb{R}$.
 - ii) A function $f: \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and $f(x) = 0, \forall x \in \mathbb{Q}$. Prove that $f(x) = 0, \forall x \in \mathbb{R}$.
 - iii) Give an example of a function f which satisfies the intermediate-value property on a closed and bounded interval [a, b], but is not continuous on [a, b].

iv) Let a function $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x^2, & \text{if } x \in \mathbb{Q} \\ 0, & \text{if } x \in \mathbb{R}/\mathbb{Q} \end{cases}$

Then show that f'(0) = 0.

- v) Find grad $\log |\vec{r}|$.
- vi) Give an example of a function which satisfies all the conditions of Rolle's theorem, where the derivative of the function vanishes at two distinct interior points.
- vii) Determine the constants a, b, c so that the vector

$$\bar{A} = (x + 2y + az)i + (bx - 3y - z)j + (4x + cy + 2z)k$$
 is irrotational.

- viii) State Rolle's theorem.
- ix) Find $\lim_{x\to 0} e^x sgn(x+[x])$, where the signum function is defined as

$$sgn(x) = \begin{cases} \frac{|x|}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

- x) Give an example of a function f which is continuous on a closed interval I, but f(I) is not a closed interval.
- xi) If $f(x) = \max \{x, x^{-1}\}$, for x > 0, then obtain the value of f(c), $f(c^{-1})$ at c > 0.

- xii) A particle moves along the curve $x = 2t^2$, $y = t^2 4t$, z = 3t 5. Determine the velocity and acceleration at any time t = 1.
- xiii) If $f(x) = -\sqrt{1-x^2}$, then show that f'(x) assumes every real value as x runs over (-1,1).
 - xiv) If the vectors \vec{A} and \vec{B} are irrotational, then show that the vector $\vec{A} \times \vec{B}$ is solenoidal.
 - xv) If f is derivable on [0,1], then show by Cauchy's mean value theorem that $f(1) f(0) = \frac{f'(x)}{2x}$ has at least one solution in (0,1).
- 2. Answer any **four** questions: $5\times4=20$
 - a) i) The functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ both are continuous on \mathbb{R} . Then show that the set $S = \{x \in \mathbb{R}: f(x) = g(x)\}$ is a closed set in \mathbb{R} .
 - ii) Construct a function $f: [0, \frac{\pi}{2}] \to \mathbb{R}$ which is unbounded on the closed interval and discontinuous only at the point $\frac{\pi}{2}$. 4+1
 - b) Let $D \subset \mathbb{R}$. A function $f: D \to \mathbb{R}$ is uniformly continuous on D if and only if for every pair of sequences $\{x_n\}$ and $\{y_n\}$ in D satisfying $\lim_{n\to\infty} |f(x_n) f(y_n)| = 0$ holds.

(3)

- c) i) Let $f:[a,b] \to \mathbb{R}$ be a thrice differentiable function on [a,b]. If f(a) = f(b) = f'(a) = f'(b) = 0, then prove that f'''(c) = 0 for some $c \in (a,b)$.
 - ii) Show that between any two roots of $e^x \sin x = 1$,, there is a real root of $e^x \cos x + 1 = 0$.
- d) A function $f: \mathbb{R} \to \mathbb{R}$ is continuous and $f(x+y) = f(x).f(y) \ \forall x,y \in \mathbb{R}$. If f(1) = c then show that $f(x) = cx, \forall x \in \mathbb{R}$.
- e) i) If $f(x) = \begin{cases} 2x + 3, & \text{if } x \le 1 \\ ax^2 + bx, & \text{if } x > 1 \end{cases}$ where a and b are real constants and if f is derivable everywhere, then find the values of a and b.
 - ii) Show that f(x) = [x] in [0,2] is not derivable of any function. 3+2
- f) If f is derivable in [a,b] and f'(a) and f'(b) are of opposite signs, then show that there exists at least one point $c \in (a,b)$ such that f'(c) = 0.

(4)

3. Answer any two questions:

- $10 \times 2 = 20$
- a) i) If $f(x) = \sin x$, then prove that $\lim_{h \to 0^+} \theta = \frac{1}{\sqrt{3}}$, where θ is given by $f(h) = f(0) + hf'(\theta h), 0 < \theta < 1$.
 - ii) If \overline{w} is a constant vector, \overline{r} and \overline{s} are vectors functions of a scalar variable t and if $\frac{d\overline{r}}{dt} = \overline{w} \times \overline{r}$, $\frac{d\overline{s}}{dt} = \overline{w} \times \overline{s}$, then show that $\frac{d}{dt}(\overline{r} \times \overline{s}) = \overline{w} \times (\overline{r} \times \overline{s})$.
 - iii) Use Cauchy's mean value theorem to evaluate

$$\lim_{h \to 1} \frac{\cos \frac{1}{2} \pi x}{\log \left(\frac{1}{x}\right)}.$$
 4+3+3

b) i) A function $f:[0,1] \to \mathbb{R}$ is defined by $f(x) = \begin{cases} x, & x \text{ is rational in } [0,1] \\ 1-x, & x \text{ is irrational in } [0,1]. \end{cases}$ Show that (i) f is injective on [0,1], (ii) f assumes every real number in [0,1], (iii) f is continuous at $\frac{1}{2}$ and discontinuous at every other point in [0,1]. 2+1+2

(5)