204/Phs UG/2nd Sem/PHY-G-CC-T-02(A-D)/21

U.G. 2nd Semester Examination - 2021 PHYSICS

[PROGRAMME]

Course Code: PHYG-CC-T-02(A-D)

Full Marks: 20 Time: 1 Hour

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer all the questions from selected Option.

OPTION-A

PHY-G-CC-T-02A

(Mathematical Physics-II)

GROUP-A

1. Answer any **five** questions:

- $1 \times 5 = 5$
- a) What is a periodic function?
- b) What is the complex presentation of Fourier series?
- c) What do you mean by even function?
- d) State Parseval identity in connection with the Fourier series.
- e) What is a regular singular point?

- f) What do you mean by zeros of Bessel's function?
- g) What is systematic error?
- h) Write the wave equation in spherical coordinate.

GROUP-B

2. Answer any **one** question:

- $5 \times 1 = 5$
- a) Show the relation between the beta β (m,n) and gamma function Γ (n) is β (m,n) = $\frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$. Show that β (m,n) = β (n,m). $2\frac{1}{2}+2\frac{1}{2}$
- b) Find the Fourier series expansion of the periodic function $f(x) = x^2$ in the interval $-\pi \le x \le \pi$. Hence find the sum of the series $\sum_{1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.
- Write down the expression of Bessels differential equation. Hence write down the form of Bessel's function $J_n(x)$. Using the form of Bessel's function show that $x \frac{d}{dx} J_n(x) = n J_n(x) x J_{n+1}(x) . \qquad 1+1+3$

GROUP-C

3. Answer any **one** question:

 $10 \times 1 = 10$

a) What is separation of variable method? Find out the form of two-dimensional Laplace equation $\nabla^2 u = 0 \quad \text{in plane polar } (r,\theta) \text{ coordinate and solve the resulting equation, subject to the boundary conditions:}$

$$u(r,0) = 0, 0 \le r \le a$$

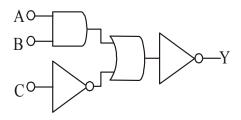
$$u(r,\pi) = 0, 0 \le r \le a$$

$$u(a,\theta) = c$$

2+2+6

- b) Write the mathematical expression of Error function. Show that for error function erf(0)=0 and erf(1)=1. Expand the function f(x)=x into Fourier series in the interval $0 < x < 2\pi$. What is Half range sine series? State the Dirichlet Theorem and Dirichlet conditions in connection with the Fourier series. 1+(1+1)+3+1+3
- c) i) What is Frobenius method?
 - ii) $x \frac{d^2y}{dx^2} + \frac{dy}{dx} + xy = 0$ Check the singularity of this differential equation about x = 0. Solve the differential equation about x = 0using series solution. 2+(2+6)

OPTION-B PHY-G-CC-T-02B


(Digital Systems and Applications)

GROUP-A

1. Answer any **five** questions:

 $1 \times 5 = 5$

- n) Draw the logic diagram of a Master-Slave J-K flip-flop.
- b) Write down Boolean expression of output Y in terms of three input A,B,C for the following logic circuit:

- c) Define 'SSI' and 'VLSI'.
- d) Define 'ROM' and 'RAM'.
- e) Draw simplified block diagram of 'CRO'.
- f) Give example of 'Linear' and 'Digital' IC.
- g) Draw the logic symbol and write down the truth table of NOR and NAND gate.
- h) Convert decimal number 25.85 to a binary number.

GROUP-B

2. Answer any **one** question:

 $5\times1=5$

- a) Define 'multiplexer' and 'demultiplexer'? Draw a logic block diagram of 4:1 multiplexer. Write down truth table of a 4:1 multiplexer. 2+2+1
- b) Write down and prove De Morgan's two theorems. $2\frac{1}{2}+2\frac{1}{2}$
- c) Draw block diagram of a 8085 microprocessor with proper labeling. Write down the function of ALU for this.

GROUP-C

3. Answer any **one** question:

 $10 \times 1 = 10$

[Turn over]

- a) i) Perform the binary addition 1111+101.

 Also show the corresponding decimal addition.
 - ii) Use 1's complement to perform binary subtraction 1101 1010.
 - iii) What is a flip-flop? Give logic symbol and truth table of a S-R flip-flop. Draw its logic circuit realization using NOR/NAND gates. 2+2+(1+2+3)
- b) i) What is the time base generator in a CRO?

- ii) A sine wave is displayed on a CRO screen with the calibrated time base set at 0.1ms/div. One cycle of displayed waveform spreads over 10 divisions along the horizontal axis. Find the frequency of the waveform.
- iii) Write down name of different application of CRO and explain any two of them.

2+3+(1+4)

- c) i) Draw the symbol and write down truth table of a 'Half-adder'. Hence write the Boolean expression for the 'sum' and 'carry'. Draw its circuit realization using logic gates.
 - Define 'Register' in digital circuit. Name different types of register. Draw a 4-bit shift register logic circuit using flip-flops. (2+2+2)+(1+1+2)

OPTION-C PHY-G-CC-T-02C (Thermal Physics)

GROUP - A

1. Answer any **five** questions:

- $1 \times 5 = 5$
- a) What is meant by the mean free path of a molecule in a gas assembly?
- b) What do you mean by degrees of freedom of a dynamical system?
- c) Write down the conclusion of Andrews experiment on carbon dioxide.
- d) State first law of thermodynamics.
- e) What is enthalpy?
- f) Distinguish between extensive and intensive variables.
- g) Write down Clausius-Clapeyron equation.
- h) What do you mean by transport phenomena in ideal gases?

GROUP-B

2. Answer any **one** question:

- $5\times1=5$
- a) Write down Maxwell's law of distribution of molecular velocities and explain the symbols used. Hence derive the formula for RMS velocity of molecules.
- b) State and prove Carnot's theorem. 2+3
- c) A gas at 10 atm pressure and 1 litre volume expands adiabatically to 2 atm and 3.16 litre volume. Calculate the amount of work done by the gas in Joule. Assume $\gamma = 1.4$.

GROUP-C

3. Answer any **one** question:

- $10 \times 1 = 10$
- Distinguish between cooling produced by J-T process and adiabatic expansion. Derive an expression for J-T cooling. What is the temperature of inversion? Show how you can calculate it from van der Waal' critical constants.

 2+3+2+3
- that the sum of entropies of all systems taking part in a reversible process remains constant and increases in all reversible processes.

 Calculate the increase in entropy when one gram of ice at -10°C is converted into steam at 100°C. Given specific heat of ice = 0.5, latent heat of ice=80 cal/g and latent heat of
- c) Derive Maxwell's thermodynamic relations and hence prove the relation

$$Cp - Cv = T \left(\frac{\delta p}{\delta T}\right)_{v} \left(\frac{\delta V}{\delta T}\right)_{p}$$

steam = 540 cal/g.

Find the change in freezing point of water at 0°C for an increase in pressure by 1Atm. Given specific volume of ice at 0°C equal to 1.091cc, latent heat of water at 0°C=76.9cal/g.

4+2+4

2+3+5

OPTION-D

PHY-G-CC-T-02D

(Waves and Optics)

GROUP - A

1. Answer any **five** questions:

 $1 \times 5 = 5$

- a) Define 'bel' and 'phon'?
- b) The velocity of sound through a solid medium depends on which property of the medium? Write down the relation between them.
- c) The equation of a plane sound wave is $y = 6.0 \times 10^{-6} \cos(1900t + 5.72x)$.

Determine the velocity of the sound wave.

- d) What are Lissajous figures?
- e) Give one example each of plucked, struck and bowed stringed musical instruments.
- f) If the wavelength range of visible light is 4000 Å 8000Å in vacuum, calculate the frequency range of visible light.
- g) Why the center of Newton's Rings is dark?
- h) How a grating spectrum differs from a prism spectrum?

(9)

GROUP-B

2. Answer any **one** question :

 $5 \times 1 = 5$

- a) What is meant by natural and damped oscillation? Explain graphically. Define Forced vibration and resonance. 3+2
- b) Determine the expression of velocity of longitudinal waves in a thin solid rod. 5
- c) What is Huygens' principle of wave propagation? Establish Snell's law of refraction using this principle. 2+3

GROUP-C

Answer any **one** question:

 $10 \times 1 = 10$

- 3. a) What is meant by standing wave.
 - b) Obtain the equation of a standing wave.
 - For a standing wave, where would the sound be louder at node or anti-node? Why?
 - d) Three strings A, B, C of the same length are stretched on a sonometer. Their relative masses per unit length are 2:8:18, and the tensions 12:12:27. Find the ratio of the frequencies of the notes emitted by them. 2+3+2+3
- 4. a) What is interference of light? State the conditions for sustained interference.

204/Phs

- b) Deduce an expression for the intensity of light at a point due to the superposition of waves coming from two coherent light sources.
- In Young's experiment for interference of light, the slits being 0.2 cm apart are illuminated by light of wavelength 5896Å. Calculate the fringe-width which is observed on a screen placed 1 cm away from the plane of the slits.

 (2+2)+3+3
- 5. a) Write down the difference between Fresnel and Fraunhofer diffraction.
 - b) Explain how the wavelength of a monochromatic light can be determined by a plane transmission grating.
 - c) A grating produces the first order maxima at an angle 30° for a light of wavelength 6000Å. Find out how many lines per cm are there in the grating.

 3+4+3
