280/Phs(C) UG/2nd Sem/PHY-G-CC-T-02(A-E)/24

U.G. 2nd Semester Examination - 2024

PHYSICS

[PROGRAMME]

Course Code: PHY-G-CC-T-02(A-E)
[CBCS]

Full Marks: 40

Time: $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer all the questions from selected Option.

OPTION-A PHY-G-CC-T-02A (Thermal Physics) GROUP-A

Answer any five questions:

 $2 \times 5 = 10$

- a) At what temperature will root mean square velocity of nitrogen molecule be double its value at N.T.P. when pressure remains constant?
- b) Write the Zeroth law of thermodynamics and hence give a concept of temperature.
- c) What is mean free path of gas molecules in a gas? Write down its expression.

- d) Define Compressibility and Expansion Co-efficient.
- e) Prove for a quasistatic adiabatic process of an ideal gas $TV^{\gamma-I} = \text{const.}$
- f) "The existence of internal energy can be inferred from the first law of thermodynamics" —Discuss.
- g) Define Boyle's temperature. What would be the nature of the pV-p plot of a real gas at its Boyle's temperature?
- h) Explain the terms 'State function' and 'Path function'. Show that the work done by a system is a path function.

GROUP-B

- 2. Answer any **two** questions: $5 \times 2 = 10$
- a) State the characteristics of Brownian motion. A perfect gas at 27°C is suddenly compressed to 8 times its original pressure. Find its rise in temperature, if $\gamma = 1.5$. $2\frac{1}{2} + 2\frac{1}{2}$
 - b) Deduce an expression for the most probable velocity of the molecules of a gas. Hence show that if the most probable velocity is taken as unit of speed for gas molecules, the probability

that the speed is between c and c+dc is independent of temperature. 2+3

c) Write the principle of increase of Entropy. Calculate the change in entropy for an ideal gas which undergoes an isothermal expansion.

d) Prove that the difference of molar specific heat $C_p - C_v = \left\{ P + \left(\frac{\partial U}{\partial V} \right)_T \right\} \left(\frac{\partial V}{\partial T} \right)_P.$ Hence calculate the difference of molar specific heat for an ideal gas.

GROUP C

Answer any two questions:

 $10 \times 2 = 20$

- 3. a) Write down the Maxwell's four thermodynamic relation. Starting from the first relation derive the Clapeyron's equation. 2+2
 - b) Derive the first energy equation and hence show that temperature remaining constant, the internal energy of an ideal gas is independent of volume.

 2+2
 - c) What are the first and second order phase transitions and what is the phase diagram?

)

- 4. Using thermodynamic potentials derive Maxwell's four relations. $2\frac{1}{2} + 2\frac{1}{2} + 2\frac{1}{2} + 2\frac{1}{2}$
- 5. a) The equation of state of Vander waal gas is given by $\left(P + \frac{a}{v^2}\right)(v b) = RT$, where a, b and R are constants. Calculate the quantities: $\left(\frac{\partial P}{\partial v}\right)_T$ and $\left(\frac{\partial P}{\partial T}\right)_v$.
 - b) Show that the work done by an ideal gas during the quasi-static, isothermal expansion from an initial pressure P_i to a final pressure P_f is given by $W = nRTln(P_f/P_i)$. Calculate the work done when the pressure of 1 mol of an ideal gas is decreased quasi—statically from 20 to 1 atm, the temperature remaining constant at 20° C(R = 8.31 J/mol.deg).
 - c) Consider the entropy of a pure substance as a function of T and V, derive the first TdS equation.
- 6. a) Write down the Maxwell's law of velocity distribution of the molecules of a gas mentioning each symbol. Indicate graphically how this distribution changes with the rise of temperature.

- b) Starting from speed distribution law of Maxwell, deduce the momentum distribution law of the molecules of a gas. 2
- c) If αt be the probability of a gas molecule making a collision in the time interval dt, where α is a constant, (i) find the probability of a gas molecule experiencing no collision during the interval t, and (ii) calculate the mean time interval between successive collisions. 2+2

OPTION-B

PHY-G-CC-T-02B

(Electricity and Magnetism) GROUP-A

Answer any five questions:

 $2 \times 5 = 10$

- Find a vector that is orthogonal to the plane containing the points P=(3, 0, 1), Q=(4, -2, 1)and R:(5, 3, -1).
- Check whether the following represent electrostatic fields or not:

$$\vec{E} = A[y^2t\hat{\imath} + (2xy + z^2)t\hat{\jmath} + 2yzt\hat{k}]$$

- Write the differential form of Gauss's law for dielectric.
- Show that electric field is always perpendicular to the equipotential surface.
- What is Lorentz force? Explain with diagram. e)
- State and explain Gauss law in dielectric medium.
- Define polarization vector of a dielectric. What is its physical significance?
- State and explain Gauss divergence theorem and Stoke's theorem of vectors.

[6]

GROUP-B

Answer any two questions:

 $5 \times 2 = 10$

- What is electric field intensity (\vec{E}) and electric potential (φ) at a point P due to a charge +q at a distance r. Find the relation between \vec{E} and φ . Calculate $\vec{\nabla} \times \vec{E}$. 1+2+2
- Derive the expression of Potential and Electric field due to an electric dipole of dipole moment 'm' at a point at a distance 'r' from on its axial line.
- Write the differences between dia-, para- and ferro magnetic materials. Define dielectric susceptibility of a medium. What is linear dielectric? Give example.
- Prove that $\vec{\nabla} \times (\phi \vec{V}) = (\vec{\nabla} \phi) \times \vec{V} + \phi (\vec{\nabla} \times \vec{V})$ for a scalar field $\phi(x, y, z)$ and a vector field $\vec{V}(x,y,z)$.

Now take \vec{V} to be a non-zero constant vector field \vec{C} and use Stoke's theorem to prove that

$$\oint_C \phi d\vec{r} = \iint_S d\vec{S} \times \nabla \phi$$

2 + 3

GROUP- C

Answer any two questions:

 $10 \times 2 = 20$

- 3. a) State and explain Faraday's laws of electromagnetic induction.
 - b) Starting from the expression of magnetic vector potential $\vec{A} = \frac{\mu_0 I}{4\pi} \int \frac{\vec{dl}}{r}$, obtain the expression $\vec{B} = \frac{\mu_0 I}{4\pi} \int \frac{\vec{dl} \times \vec{r}}{r^2}$, where $\vec{B} = \vec{\nabla} \times \vec{A}$.
 - c) Calculate self inductance L of a circular coil of radius 'a' having 'n' turns. 3+4+3
- 4. a) Write down the relation between B, H and M. What is ferromagnetism? Draw magnetization curves for soft iron and steel on the same graph as each is taken through a complete cycle of magnetic field.
 - b) Show that the hysteresis loss per unit volume per cycle of magnetization is equal to the area enclosed by the B-H loop.
 - c) Derive an expression of magnetic force on a current carrying wire. (1+1+2)+3+3
- 5. a) State and explain equation of continuity of current. What is Displacement current?
 - b) Consider a long straight wire XY carrying current I(t). Calculate the flux through a rectangular wire ABCD in the plane of the wire

- XY. Calculate induced e.m.f around ABCD and comment about the direction of induced current in ABCD.
- c) What is a parallel plate capacitor? Find an expression for its capacitance. 2+(2+1+1)+4
- 6. a) Calculate the electric field inside and outside of a uniformly charged solid sphere.
 - b) Show that the electrostatic self energy of a uniformly charged sphere is $\frac{1}{4\pi\varepsilon_0} \frac{3Q^2}{5a}$? Where 'a' is the radius of the sphere, Q is the charge on the sphere.
 - c) Define magnetic vector potential and scalar potential. 4+4+2

OPTION-C

PHY-G-CC-T-02C

(Waves & Optics)

GROUP-A

1. Answer any **five** questions:

 $2 \times 5 = 10$

- a) Why two candles do not produce intereference pattern?
- b) The wavelength of a light 589nm incident on a grating with 104 lines/mm. How many orders would be visible?
- c) Explain the formation of Newtons ring with diagram.
- d) Draw the resultant patterns due to superposition of two rectangular simple harmonic motion with same frequencies.
- e) At what temperature would the speed of sound in air be double its value at 0°C.
- f) An orange light with wavelength 600nm has a coherence length of approx. 20cm. Calculate the line width in terms of wavelength.
- g) Distinguish between interference and diffraction.

 The primary focal length of a zone plate is 20cm for light of wavelength 500nm.
 Calculate the radius of the central zone on the zone plate.

GROUP-B

2. Answer any two questions:

5×2=10

- a) Show that the radius of the nth zone of Fresnels
 Half period zone depends on 'n' but the area of
 the nth zone is independent of 'n'.
- b) Explain the nature of Lissajous figure obtained due to superposition of the waves $x = 5 \sin \omega t$ and $y = 5 \cos \omega t$.

 Show that the number of beats produced per second is the dilference between the frequencies of the sources. 2+3=5
- c) Calculate the fringe width produced on a film when a parallel beam of monochromatic light incident normally on the film.
- d) Write a short note on Nicol prism. 1+4=5

GROUP-C

Answer any two questions:

10×2=20

3. Write down the characteristics of a good auditorium.

Considering necessary assumptions derive Sabine's formula of optimum reverberation. What is the

difference between Fresnel and Fraunhofer diffraction? 3+5+2

- 4. a) What is Fresnel diffraction? Discuss the properties of Fresnel diffraction of a cylindrical wave front at a narrow obstacle (cylindrical wire).
 - b) What is Holography? Briefly explain the theory of Holography. 1+4+1+4
- 5. a) Consider a constant tension of stretched string is 'T'. The length of the string is 'L' and mass per unit length is 'm'. Calculate the velocity of transverse vibration of the string.
 - b) For a plucked string, show that the amplitude of the s-th harmonic is proportional to 1/s².

3+7

- 6. a) Write down the conditions for observable interference pattern.
 - b) Explain the effect of introducing a thin glass plate in the path of one of the interfering beams in bi-prism experiment. Also show that the velocity of light is maximum in vacuum.

2+8

OPTION-D

PHY-G-CC-T-02D

(Digital Systems & Applications)

GROUP-A

1. Answer any five questions:

 $2 \times 5 = 10$

- a) Write the full form of ALU in microprocessor.
- b) What do you mean by positive logic and negative logic?
- c) What do you mean by bit, nibble and byte?
- d) Write down the two De Morgan's theorem.
- e) Which gates are called universal logic gates and why?
- f) Convert binary 110.001 to a decimal number.
- g) What is the difference between analog and digital circuits?

GROUP-B

2. Answer any two questions:

 $.5 \times 2 = 10$

- a) Show how an S-R flip-flop can be converted into a J-K flip flop. What do you mean by edge triggering in a flip flop? 3+2
- b) What do the letters R and S stand for in the term "RS flip-flop"? Explain the operation of the master-slave flip-flop. 1+4

[13]

- c) What is a multiplexer? Explain with the help of truth table and logic circuit how a 4-to-1 multiplexer works.
- d) What are minterms? How many fundamental products are there for *n* variables? Let us suppose that a three-valuable truth table has a high output for these input conditions: 000, 010, 100 and 110. What is the sum-of-products circuit?

GROUP-C

- 3. Answer any **two** questions: $10 \times 2 = 20$
 - a) A shift register has eight flip-flops. What is the largest binary number that can be stored in it? Name the four basic types of shift registers and draw a block diagram for each. Derive an expression for deflection sensitivity of a CRT using electrostatic deflection.
 - b) Prove that $A(\overline{A}+C)(\overline{A}B+C)(\overline{A}BC+\overline{C})=0$. Write down a summary of the Karnaugh-map method for simplifying Boolean equations. Subtract 16 from 83 by using 2's complement representation. 3+3+4

+BC+A+ABC

Using NAND only generate the function: B+A. What is a decoder? Explain with logic circuit how BCD digits can be decoded as decimal digit.

4+2+4

d) Draw the logic diagram, truth table and waveforms for a two-flip-flop ripple counter.

Draw the circuit diagram of an astable multivibrator using IC 555 timer and explain its working principle. Convert the binary number 1011110001.1001101 into its hexadecimal equivalent.

3+5+2

OPTION-E

PHY-G-CC-T-02E

(Mathematical Physics-II)

GROUP-A

1. Answer any five from the following questions:

 $2 \times 5 = 10$

- a) Define gamma function $\Gamma(n)$. Evaluate $\Gamma(-5/2)$ using $\Gamma(1/2) = \sqrt{\pi}$.
- b) Define ordinary point and singular point.
- c) What do you mean by even and odd function symmetry?
- d) Distinguish between Random error and Systematic error.
- e) Show that $erf(\infty) = 1$.
- f) Write down the Laplace's equation for spherical polar coordinate.
- g) State under what conditions, a function f(x) can be Fourier expanded in convergent series.
- h) What are the Dirichlet conditions in Fourier series?

[16]

GROUP-B

2. Answer any two from the following questions:

 $5 \times 2 = 10$

Show that $\Gamma(n+1) = n!$ and hence show $\Gamma(5/2) = (3/4) \sqrt{\pi}$.

b) Expand the function $f(x) = \begin{cases} 0, & -\pi \le x < 0 \\ A & 0 \le x < \pi \end{cases}$ in a Fourier series.

Examine the singular point for the following Bessel's equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 - m^2)y = 0$ and also show the nature of singularity. 5

d) Solve the following boundary value problem $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y} \text{ given } u(0, y) = 8 e^{-3y}, \text{ by the method}$ of separation of variables.

GROUP-C

Answer any two from the following questions:

 $10 \times 2 = 20$

3. a) Define Bessel's function of first kind of order n denoted by J_n and prove the recurrence formulae $xJ_n' = nJ_n - xJ_{n+1}$.

b) Show that $g(x, t) = (1-2xt+t^2)^{-1/2}$ is the generating function of Legendre polynomials $P_n(x)$ and hence prove the recurrence relation $n P_n(x) = (2n-1)x P_{n-1}(x) - (n-1) P_{n-2}(x)$.

2+3

- 4. a) Show that $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.
 - b) Find the Fourier series for the following function $f(x) = \begin{cases} -k, & -\pi < x < 0 \\ k, & 0 < x < \pi \end{cases}$.

Hence show that $\frac{\pi}{4} = 1 - 1/3 + 1/5 - 1/7 + 1/9 - \dots$

4+2

5. a) State whether the following partial differential equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ is elliptic or parabolic. Find a solution to the following differential equation $\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0$ inside an annulus bounded by the circles $x^2 + y^2 = r_1^2$ and $x^2 + y^2 = r_2^2$ that satisfies the conditions $\psi = \psi_2$ at $r = r_2$ and $\left(\frac{\partial \psi}{\partial r}\right) = \frac{k}{r}$ at $r = r_1$.

[18]

- b) Write down the expression for erf(x) and erf(-x) and show that erf(x) + erf(-x) = 0.
- 6. Solve any **two** from the following integral: $5\times 2=10$

a)
$$\int_0^{\pi/2} \left(\tan^3 \theta + \tan^5 \theta \right) e^{-\tan^2 \theta} d\theta$$

b)
$$\int_{0}^{\infty} 3^{-4z^2} dz$$

c)
$$\int_0^1 \frac{dx}{\sqrt{1-x^n}}$$