The second second

U.G. 2nd Semester Examination - 2023

MATHEMATICS

[HONOURS]

Generic Elective Course (GE)

Course Code: MATH-H-GE-T-02

Full Marks: 60 Time: $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

The symbols and notations have their usual meanings.

Answer any ten questions:

- $2 \times 10 = 20$
- a) Find the degree of the differential equation

$$\left(\frac{d^2y}{dx^2}\right)^{\frac{3}{2}} - 2x\frac{dy}{dx} = \sin\left(\frac{d^2y}{dx^2}\right).$$

b) Show that the substitution z = log x transforms the equation

$$x^{2} \frac{d^{2}y}{dx^{2}} - 3x \frac{dy}{dx} + 4y = 0 \text{ into}$$

$$\frac{d^{2}y}{dx^{2}} - 4 \frac{dy}{dx} + 4y = 0.$$

Show that the differential equation of the family of circles of fixed radius r with centers on y axis is $(x^2 - r^2) \left(\frac{dy}{dx}\right)^2 + x^2 = 0$.

d) Show that
$$(1/x)^x$$
 is $(e)^{1/e}$.

of

- If f is differentiable at c and $f(c) \neq 0$, then e)
- show that $\frac{1}{f}$ is also dilferentiable at c. Show with reason that the equation
- 1) $x - \cos x = 0$ has a real root in $\left(0, \frac{\pi}{2}\right)$.
- Show that $\lim_{x\to 0} \frac{1}{1+a^{\frac{1}{x}}}$ does not exist. g)

h)

 $f(x + y) = f(x)f(y) \ \forall x, y$ and f(x) = 1 + xg(x) where $g(x) \to 1$ as $x \to 0$. Then show that f'(x) = f(x).

If the function f(x) satisfies the condition

- Explain why L'Hospital rule is not applicable i) on $\lim_{x\to 0} \frac{\sin x}{x}$.
 - \mathbf{j} Examine that Rolle's theorem is applicable on the function
- $f(x) = \begin{cases} 1 x^2, x \le 0 \\ \cos x \cdot x > 0 \end{cases} \text{ in } \left[-1, \frac{\pi}{2} \right].$ k) Find the singular solution of the differential equation $xp^2 = (x - a)^2$.

1) Evaluate: $\int_0^{\frac{\pi}{2}} \cos^7 x dx$.

m) If
$$V = \sin^{-1}\left(\sqrt{\frac{x^{\frac{1}{3}} + y^{\frac{1}{3}}}{x^{\frac{1}{2}} + y^{\frac{1}{2}}}}\right)$$
, then show that
$$x\frac{\partial V}{\partial x} + y\frac{\partial V}{\partial y} = -\frac{1}{12}tanV.$$

- n) Explain whether the function f(x) = [x] is continuous at x = 1 or not.
- o) If $y_1 = 1 + x$ and $y_2 = e^x$ be two solutions of $\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0$ Find P(x).
- 2. Answer any **four** questions: $5 \times 4 = 20$
 - a) If $u = xf\left(\frac{y}{x}\right) + g\left(\frac{y}{x}\right)$ then show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0.$
 - b) Determine $\lim_{x \to \infty} [x \sqrt[n]{(x a_1)(x a_2) \dots (x a_n)}].$
 - Show that at $x = \frac{1}{4}$ the function $f(x) = \frac{1}{8} \log x bx + x^2, x > 0$, where $b \ge 0$ is a constant has neither maximum nor minimum.

d) If
$$y = x \log y$$

If $y = x log(\frac{x-1}{x+1})$, prove

$$y_n = (-1)^n (n-2)! \left[\frac{x-n}{(x-1)^n} - \frac{x+n}{(x+1)^n} \right].$$

e) If $I_{m,n} = \int \sin^m x \cos^n x dx$, then show that

that

 $10 \times 2 = 20$

$$I_{m,n} = \frac{\sin^{m+1}x\cos^{n-1}x}{(m+n)} + \frac{(n-1)}{(m+n)}I_{m,n-2}.$$
f) Find the general and singular solution of differential equation:

 $(px^2 + y^2)(px + y) = (p + 1)^2$ Solve the differential equation by the method g)

of undetermined coefficients:

$$(D^2 + 2D + 2)y = x^2 + sinx.$$

3. Answer any **two** questions:
$$10 \times 2 =$$
a) i) If $y = (sinh^{-1}x)^2$, prove that

$$(x^2 + 1)y_{n+2} + (2n + 1)xy_{n+1} + n^2y_n = 0.$$

ii) Show that
$$x > \log(1+x) > x - \frac{1}{2}x^2 \quad (x > 0)$$

ii) Show that
$$x > log(1+x) > x - \frac{1}{2}x^2$$
; $(x > 0)$.

Find the expansion of $(1+x)^n$ in a power b) i) series of x and indicate the range of validity of the expansion.

ii) If
$$f(x + y) = f(x) + f(y)$$
 for all x and y and $f(x)$ is continuous at $x = 0$. Then show that $f(x)$ is continuous for all values of x .

c) i) If
$$H$$
 be a homogeneous function in x , y , z of degree n then show that :
$$\frac{\partial}{\partial x} \left(H \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(H \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial z} \left(H \frac{\partial u}{\partial z} \right) = 0 ,$$
 if $u = (x^2 + y^2 + z^2)^{\frac{(n+1)}{2}}$.

ii) If
$$\phi(x)$$
 be a polynomial in x and λ is a real number then prove that there exists a root of $\phi'(x) + \lambda \phi(x) = 0$ between any pair of roots of $\phi(x) = 0$. 5+5

d) i) Show that
$$x^{-\frac{1}{2}}cosx$$
 and $x^{-\frac{1}{2}}sinx$ be two linearly independent solutions of $x^2\frac{d^2y}{dx^2} + x\frac{dy}{dx} + \left(x^2 - \frac{1}{4}\right)y = 0$ and find the general solution of
$$x^2\frac{d^2y}{dx^2} + x\frac{dy}{dx} + \left(x^2 - \frac{1}{4}\right)y = x^{-\frac{3}{2}}.$$

ii) Solve the differential equation:

$$(2+x)^2 \frac{d^2y}{dx^2} + (2+x)\frac{dy}{dx} + 4y = 2\sin(2\log(2+x))$$