U.G. 2nd Semester Examination - 2023

MATHEMATICS

[HONOURS]

Course Code: MATH-H-CC-T-04

(Differential Equations)

Full Marks: 60

Time: $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

The symbols and notations have their usual meanings.

1. Answer any ten questions:

2×10=20

- Consider $\frac{dy}{dt} = 3y^{\frac{2}{3}}$, y(0) = 0. Is the solution of the equation unique? Support your answer.
- b) Deduce the differential equation of all parabolas having their axes parallel to the y-axis.
- (c) Solve $\frac{dy}{dx} = \sqrt{y-x}$.
- d) Define Clairaut's form of a differential equation. What is its complete primitive?
- e) If f(x) = x|x|, examine if $\frac{d^2f}{dx^2}$ exists at x=0.

- f) Verify that $(x+y+1)^{-4}$ is an integrating factor of $(2xy-y^2-y)dx+(2xy-x^2-x)dy=0$.
- g) Show that the curve for which the tangent at every point makes a constant angle with the radius vector is an equi-angular spiral.
- Solve $(x^2y 2xy^2)dx + (3x^2y x^3)dy = 0$.
- Consider the equation $t \frac{dy}{dt} 2y = 0$. Consider the case (a) y(0) = 0 (b) $y(0) \neq 0$. For which case the equation will have no solution?
- j) Consider the equation $\frac{dx}{dt} = x^2$. Determine the equilibrium point of the equation. Is the equilibrium point stable?
- Find a particular integral of $(D^2 4D + 4) y = x^3 e^{2x}$
- Solve the equations

$$\frac{dx}{bcyz} = \frac{dy}{cazx} = \frac{dz}{abxy}$$

m) Determine the characteristics of the equation $u_y(x,y)+ku_x(x,y)=0$, k is constant.

n) Solve
$$p^3x - p^2y$$
, where $p = \frac{dy}{dx}$.

o) Verify if the following equation is integrable:

$$(y^2 + yz + z^2)dx + (z^2 + zx + x^2)dy + (x^2 + xy + y^2)dz = 0.$$

2. Answer any four questions:

$$5 \times 4 = 20$$

(a) Solve the equation

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 8e^{2x}$$

by the method of undetermined coefficients.

(b) Solve
$$\sin x \frac{d^2y}{dx^2} - \cos x \frac{dy}{dx} + 2y \sin x = 0$$
.

Obtain an analytic solution of the equation $\frac{d^2y}{dx^2} + y = 0 \text{ around } x = 0.$

$$\frac{d^2y}{dx^2} + y = \csc x$$

by the method of variation of parameter.

e) Solve the partial differential equation

$$px + 3qy = 2\left(z - x^2q^2\right)$$

by Charpits method

f) Solve the partial differential equation

$$xz_x - yz_y = \frac{y^2 - x^2}{z}.$$

3. Answer any two questions:

$$10 \times 2 = 20$$

- a) i) Solve $x \frac{d^2y}{dx^2} (2x-1)\frac{dy}{dx} + (x-1)y = 0$.
 - ii) Verify that x is a solution of the reduced equation of $x^2 \frac{d^2y}{dx^2} x \frac{dy}{dx} + y = x^2$.

Solve the equation after reducing it to a first order linear equation. 5+5

- b) Solve $(D^2+4)y = \sin 2x$
 - (i) Solve the system

$$(D^{2}-2)x-3y=e^{2t}$$

$$(D^{2}+2)y+x=0$$
4+6

c) i) Solve the partial differential equation $xz_y - yz_x = z$ with initial condition

$$z(x,0) = f(x), x \ge 0.$$

ii) Form a partial differential equation by eliminating the arbitrary function F from the relation

$$F(x+y+z, x^2+y^2+z^2)=0.$$
 6+4