U.G. 2nd Semester Examination - 2020

CHEMISTRY

[HONOURS]

Course Code: CEMH/CC-T-04

(Organic Chemistry)

Full Marks : 40 Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any **five** questions:

 $2 \times 5 = 10$

 Identify pro-S and pro-R hydrogen atoms in the following molecules:

- b) Indicate the pro-R methyl group and Re-face in isobutyraldehyde.
- c) Which one has higher enol content of the following compounds and why?

Ph-CH₂-CO-CH₂-CO-CH₃ and CH₃-CO-CH(Ph)-CO-CH₃

- d) What are the electrophilic and nucleophilic catalysts? Give one example of each.
- e) E-2 elimination of 2-bromobutane with NaOEt in EtOH yields 19% of 1-butene whereas same NaOEt in t-BuOH increases the yield of 1-butene to 38%. Explain.
- f) Which one will react faster in S_N1 reaction CH₂=CHCH₂Cl or Ph₃C-Cl and why?
- g) CH₃CH=CHCH₂-Cl and CH₃-CH(Cl)-CH=CH₂ give same product when treated with diethylamine. Give the structure of the product and explain its formation.
- h) Draw the most stable conformation of 1,2-dibromoethane and ethylene glycol justify your answer.
- 2. Answer any **two** questions:

 $5\times2=10$

a) i) Identify H_A and H_B in each of the following structures as homotopic, enantiotopic or diastereotopic ligands and explain.

- ii) Predict configuration of products when pro-R hydrogen of propanal is replaced by Br and CN is attacked from the Re-face of propanal.
- b) i) Draw the energy profile diagram of a twostep exothermic reaction, activation energy of the 1st step is greater than that of 2nd step but the 2nd step is rate determining step. Justify your drawing.
 - ii) 2,4,6-trinitro-N,N-dimethylaniline is $4x10^4$ times stronger base than 2,4,6-trinitroaniline explain. 3+2
- c) i) Calculate Δ H° for the following two reactions from the bond dissociation energy data provided and indentify with reasoning which one is preferred thermodynamically.

I)
$$\triangleright$$
O + HCN \longrightarrow OH CN II) \triangleright O + HCI \longrightarrow OH CI

BDE (kcal/mole): H-Cl (103), H-CN (130), C-Cl (84), C-CN (122).

- ii) Arrange the following compounds in order of increasing basicity in aqueous medium and explain.
 - Methyl amine, dimethyl amine and trimethyl amine 3+2
- d) i) What is meant by primary kinetic isotope effect? Explain with an example. How this effect can be used in investigation of reaction mechanism?
 - ii) Acetylacetone shows 15% enol content in water whereas 92% enol content in *n*-hexane. explain. 3+2
- 3. Answer any **two** question: $10 \times 2 = 20$
 - a) i) Assign R/S descriptor to the following compounds:

- ii) Suppose **A** and **B** can react at a certain temperature to give **C**, the rate controlled product. At a higher temperature, they react to give **D**, the thermodynamic controlled product. Explain this behaviour using an energy profile diagram.
- iii) Give the structure of all possible alkenes that could form in the following reaction. Indicate the major product and explain its formation.

iv) Define pseudoasymmetric centre.

b) i) Identify H_A and H_B in each of the following structures as homotopic, enantiotopic or diastereotopic ligands and explain.

ii) Explain the following reactions with plausible mechanism and give the structure of **A** and **B**.

A
$$\frac{SOCl_2/\text{ether}}{}$$
 (S)-1-Phenylethanol $\frac{SOCl_2/\text{pyridine}}{}$ B

- iii) The substitution reaction of EtSCH₂CH₂Cl with ethanol proceeds at a rate many fold faster than the similar reaction of EtOCH₂CH₂Cl. Explain.
- iv) Salicylic acid is much stronger than *p*-hydroxybenzoic acid but acidity of *o*-nitrophenol and *p*-nitrophenol is almost same explain. 3+3+2+2
- c) i) Explain the following observation:

$$CH_{3}CH_{2}CH_{2}CH_{2}-OTs + X \xrightarrow{Ac_{2}O} CH_{3}CH_{2}CH_{2}CH_{2}X + OTs \xrightarrow{Ac_{2}O}$$

In the above reaction the order of nucleophilicity for the various halides is I > Br > Cl when LiX is used, but the order is Cl > Br > I when $Bu_4N^+X^-$ is used.

ii) Write the E-2 and E-1cb mechanism of the following reaction:

$$PhCH_2CH_2Br \xrightarrow{EtO^-/EtOH} Ph-CH=CH_2$$

Which mechanism is actually operative? Give evidence in favour of your answer.

- iii) Bromination of propane under photochemical condition is regioselective while chlorination is not. Explain on the basis of Hammond postulate.
- iv) Give an example of a molecule with enantiomorphic groups with pro-R and pro-S hydrogen atoms on a pro-pseudoasymmetric centre. 3+3+3+1
- d) i) Draw the potential energy diagram of 2,3-butanediol for rotation around C₂-C₃ bond showing the conformations. Explain the relative stabilities of the conformers.
 - ii) Chlorination (Cl₂/hv, 25°C) of isobutene produces 1-chloro-2-methylpropane and 2-chloro-2-methylpropane in the ration 64:36, but bromination (Br₂/hv, 127°C) furnishes 1-bromo-2-methylpropane and 2-bromo-2-methylpropane in the ratio 1:99. Explain the greater selectivity of bromination reaction.
 - iii) Arrange the following compounds in order of increasing acid strength and explain.

4-Nitrophenol, 2,6-dimethyl-4nitrophenol and 3,5-dimethyl-4nitrophenol. slightly greater than that of acyclic ketones whereas the enol content of cyclopentane-1,2-dikeone is much higher than that of acyclic ketones. Explain. 3+3+2+2
