U.G. 2nd Semester Examination - 2020

CHEMISTRY

[HONOURS]

Course Code: CEMH/CC-T-03

(Inorganic and Physical)

Full Marks : 40 Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

(Inorganic)

[Marks : 20]

1. Answer any **one** question:

- $1 \times 1 = 1$
- a) Give one example of each of acid buffer and basic buffer solution.
- b) What is meant by formal potential?
- 2. Answer any **two** questions:

 $2\times2=4$

a) Indicate with reason the direction of the following reaction:

$$AgF_{2}^{-} + 2I^{-} = AgI_{2}^{-} + 2F^{-}$$

- b) Arrange the following compounds in increasing order of their Lewis Acidity with proper explanation: SiF₄, SiCl₄, SiBr₄ and SiI₄
- c) Calculate the $E_{Tl}^{0.3+}/_{Tl}$ from the following data: $E_{Tl}^{0.+}/_{Tl} = -0.336V$ and $E_{Tl}^{0.3+}/_{Tl}^{+} = 1.25V$.
- d) Why NH₄Cl is added along with NH₄OH during precipitation of Gr-IIIA metal ions?
- 3. Answer any **one** question:

 $5\times1=5$

a) H₂Se is stronger acid than H₂S. Explain. SbF₅increases that acidity as well as the conductivity of liquid HF. Explain. What happens when KHSO₄ is added to H₂SO₄?

2+2+1=5

- b) Solution of metallic Na in liquid NH₃ is highly conducting. Explain. Determine the pH of a solution obtained by mixing equal volumes of 0.015N NH₄OH and 0.15N NH₄NO₃ solutions. (K_b for NH₄OH is 1.8 x 10⁻⁵). $2\frac{1}{2}+2\frac{1}{2}=5$
- c) Find out the equivalence point potential during the titration of a 0.1M Fe²⁺ solution with 0.1M Ce⁴⁺ solution. Given $E_{Fe^{-}/Fe}^{0.3+}$ =0.77V and $E_{Ce^{-}/Fe^{-}}^{0.4+}$ =1.57V. What is Z-R solution? 3+2=5
- d) The standard reduction potential of Zn²⁺/Zn (-0.76 V) and Cu²⁺Cu (0.34 V) are widely different, but their simultaneous electrode

position is possible in presence of CN⁻. Explain. Give example of one redox indicator.

4+1=5

4. Answer any **one** question:

- $10 \times 1 = 10$
- a) Reaction between CaO and P₄O₁₀ in molten state is an acid-base reaction explain. Why CH₃Hg⁺is chosen as a typical soft acid? What do you mean by levelling effect of solvent? What are super acids? Draw the acid base neutralization curve for titration between weak acid by strong base. 2+2+2+2=10
- b) MnO₄⁻ can oxidise Cl⁻ only in very low pH. Explain. Solutions containing Cu²⁺ readily oxidise KI to I₂ though the standard reduction potential of Cu²⁺/Cu⁺ (0.15V) is higher than that of I₂/2I⁻ (0.54V). Justify. What do you mean by comproportionantion reactions? Explain with example. What do you mean by Frost diagram? 3+3+2+2=10

GROUP-B

(Physical)

[Marks : 20]

5. Answer any **one** question:

 $1 \times 1 = 1$

a) The rate constant of a reaction has unit mol dm⁻³ s⁻¹. What is the order of the reaction?

- b) Draw the Carnot cycle on the S-T diagram.
- 6. Answer any **two** questions:

 $2\times2=4$

- heat engine that has a hot reservoir of water boiling under pressure at 125°C and a cold reservoir at 25°C?
- b) A spontaneous polymerization reaction is exothermic-Explain.
- c) Specific rate constant of a reaction is 0.02 s⁻¹. What is the time for 90% reaction?
- 7. Answer any **one** question:

 $5 \times 1 = 5$

- a) i) Derive Gibbs-Helmholtz equation. 3
 - ii) Observed rate constant of a reaction is given by: $K = \frac{(k1k3)^{1/2}}{k3}$.

Express the overall activation in terms of E_1 , E_2 , E_3 (E_i is the activation energy associated with K_i) 2

b) i) Show that in a Joule-Thomson expansion there is no change in the enthalpy of the gas. 3

275/Chem.

(3)

[Turn Over]

275/Chem.

(4)

- A first order reaction require 16 min for 75% decomposition. What is the half-life for the process?
- 8. Answer any **one** question: $10 \times 1 = 10$
 - a) i) Find the condition of equilibrium and spontaneity of a process in terms of Gibbs free energy and entropy using Clausius inequality.
 - ii) Calculate the entropy change when Argon at 25°C and 1 atm pressure in a container of volume 500 ml is allowed to expand to 1000ml and it is heated simultaneously at 100°C($C_V = 12.48 \text{ jmol}^{-1}\text{k}^{-1}\text{for Argon at}$ 25°C and 1 atm).
 - iii) Decomposition of a substance A is studied at two different initial concentration a_1 and a_2 , where $a_1 = 3a_2$. If the observed half-life follow the ratio $T_2:T_1 = 2:1$, find the order of the decomposition process.
 - b) i) The turnover number of the enzyme fumarase that catalyzes the reaction, Fumarate+ H_2O \longrightarrow L-malate, is 2.5×10^3 s⁻¹and k_m = 4.0×10^{-6} mol/L. Calculate the rate of conversion of

fumarate to L-malate if fumarase concentration is 10×10^{-6} mol/L and the fumarate concentration is 2.4×10^{-4} mol/L.

4

- ii) A substance decomposes according to second order rate law. If the rate constant is 6.8×10⁻⁴L/mol sec, calculate the half-life of the substance when initial concentration is 0.05 mol/L.
- convenient index for ascertaining spontaneity of process than change in enthalpy (H), internal energy (U) or entropy (S) Explain.

(6)