Sample Question Paper By Department of Mathematics

Dumkal College

for

U.G. 1st Semester [NEP-2020] MATHEMATICS [Skill Enhancement Course (SEC)] Course Code: MATH-SEC-T-01 (Logic & Boolean Algebra)

Section I

- 1. Answer any five questions: $(1 \times 5 = 5)$
 - a) What is a proposition? Give an example of a declarative statement.
 - b) Write the truth table for $p \land (p \rightarrow q)$.
 - c) Define the existential quantifier with an example.
 - d) What is the difference between a tautology and a contradiction?
 - e) Express the negation of the statement 'All birds can fly' using quantifiers.
 - f) Define a complemented lattice with an example.
 - g) If {L, \leq } is a lattice, prove that $a \lor (a \land b) = a$.
 - h) In a Boolean algebra $(B, +, \cdot, ', 0, 1)$, prove that (a')' = a.

Section II

- 2. Answer any two questions: $(5 \times 2 = 10)$
 - a) What is a contradiction? Determine whether the compound proposition ((p ∧ q) → r) ∨ (p ∧ ~r) is a contradiction.
 - b) Without using a truth table, prove that $(p \lor q) \land (\sim p \lor r) \equiv (q \lor r)$.
 - c) Simplify the Boolean expression (x + y')(x' + z) + y and draw the corresponding switching circuit.
 - d) Simplify the Boolean function $f(a, b, c) = \Sigma(1, 3, 5, 7)$ using the Karnaugh map method.

Section III

3. Answer any two questions: $(10 \times 2 = 20)$

a) i) Construct a truth table for the statement: 'If it rains, then the ground is wet.'

ii) Prove that $(p \rightarrow q) \land (\sim q \rightarrow \sim p)$ is a tautology.

- b) i) Prove that {P(S), ∩, ∪} is a lattice, where P(S) is the power set of S.
 ii) Define a modular lattice and prove that every distributive lattice is modular.
- c) i) Show that in a Boolean algebra, $(a + b)' = a' \cdot b'$.

ii) Convert the Boolean expression (x + y')(y + z) into Conjunctive Normal Form (CNF).

d) i) Define a maxterm with an example.

ii) Minimize the Boolean expression f(a, b, c, d) =

 $\Sigma(2, 4, 6, 8, 10, 12, 14, 15)$ using the Quine-McCluskey method.
