Dumkal College

U.G. 6th Semester Internal Examination-2022

MATHEMATICS [HONOURS] Course Code: MATH(H)CC-T-13 & MATH(H)CC-T-14

Full Marks: 10+10

Time: 1 Hour

The figures in the right- hand margin indicate marks. Symbols have their usual meaning.

After completion, send answer scripts in two separate pdf files with file name indicating paper name to the WhatsApp 7001717834 within 30 minutes.

MATH(H)CC-T-13

1. Answer any **five** questions:

 $5 \times 2 = 10$

- (a) Is every Cauchy sequence in a metric space convergent? Justify your answer.
- (b) Let \mathbb{N} denote the set of natural numbers. Define

$$d(m,n) = \left|\frac{1}{m} - \frac{1}{n}\right|, m, n \in \mathbb{N}.$$

Show that the metric space (\mathbb{N}, d) is not complete.

- (c) Is $Y = \{(x, y) : y = \sin \frac{1}{x}, 0 < x \le 1\} \subseteq \mathbb{R}^2$ connected?
- (d) Let \mathbb{Z} denote the set of integers in the metric space (\mathbb{R}, d) where *d* denotes usual metric. Is \mathbb{Z} compact? Justify your answer.
- (e) Show that $f(z) = \frac{\overline{z}}{\overline{z}}$ is not continuous at z = 0.
- (f) Show that $|\oint \frac{e^z}{z+1} dz| \leq \frac{8\pi e^4}{3}$.
- (g) Show that $f(z) = |z|^2$ is nowhere analytic.

MATH(H)CC-T-14

- 1. Answer any **three** questions:
 - (a) Is $\phi : \mathbb{Z}_7 \to \mathbb{Z}_{12}$ such that $\phi(a) = 4a$ a ring homomorphism?
 - (b) Prove that $\mathbb{Z}_2[x] / \langle x^2 + x + 1 \rangle$ is a field.
 - (c) Define Annihilator of a subset *S* of a vector space V(F). Show that it is a subspace of the dual space of V(F).
 - (d) Let *T* be the linear operator on \mathbb{R}^2 defined by T(a,b) = (2a + 5b, 6a + b). Compute minimal polynomial of *T*.
- 2. Answer any **one** question:
 - (a) Consider the vector space $P_2(t)$ of all polynomials of degree less or equal to two over \mathbb{R} with inner product $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$. Apply the Gram-Schmidt algorithm to the basis $\{1, t, t^2\}$ of $P_2(t)$ to obtain an orthonormal basis.
 - (b) Prove that $\mathbb{Q}[x] / \langle x^2 5 \rangle$ is ring isomorphic to $\mathbb{Q}[\sqrt{5}] = \{a + b\sqrt{5} : a, b \in \mathbb{Q}\}.$

* * *

 $3 \times 2 = 6$

 $1 \times 4 = 4$