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MATH(H)CC-T-13

1. Answer any five questions: 5× 2 = 10

(a) Is every Cauchy sequence in a metric space convergent? Justify your answer.

(b) Let N denote the set of natural numbers. Define

d(m, n) =| 1
m
− 1

n
|, m, n ∈N.

Show that the metric space (N, d) is not complete.

(c) Is Y =
{
(x, y) : y = sin 1

x , 0 < x ≤ 1
}
⊆ R2 connected?

(d) Let Z denote the set of integers in the metric space (R, d) where d denotes usual
metric. Is Z compact? Justify your answer.

(e) Show that f (z) = z̄
z is not continuous at z = 0.

(f) Show that |
∮ ez

z+1 dz| ≤ 8πe4

3 .

(g) Show that f (z) =|z|2 is nowhere analytic.
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MATH(H)CC-T-14

1. Answer any three questions: 3× 2 = 6

(a) Is φ : Z7 → Z12 such that φ(a) = 4a a ring homomorphism?

(b) Prove that Z2[x]/ < x2 + x + 1 > is a field.

(c) Define Annihilator of a subset S of a vector space V(F). Show that it is a subspace of
the dual space of V(F).

(d) Let T be the linear operator on R2 defined by T(a, b) = (2a + 5b, 6a + b). Compute
minimal polynomial of T.

2. Answer any one question: 1× 4 = 4

(a) Consider the vector space P2(t) of all polynomials of degree less or equal to two over
R with inner product < f , g >=

∫ 1
0 f (t)g(t)dt. Apply the Gram-Schmidt algorithm

to the basis {1, t, t2} of P2(t) to obtain an orthonormal basis.

(b) Prove that Q[x]/ < x2 − 5 > is ring isomorphic to Q[
√

5] = {a + b
√

5 : a, b ∈ Q}.

∗ ∗ ∗
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