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MATH(H)CC-T-13

1. Answer any five questions: 5× 2 = 10

(a) Is every Cauchy sequence in a metric space convergent? Justify your answer.

(b) Let N denote the set of natural numbers. Define

d(m, n) =| 1
m
− 1

n
|, m, n ∈N.

Show that the metric space (N, d) is not complete.

(c) Is Y =
{
(x, y) : y = sin 1

x , 0 < x ≤ 1
}
⊆ R2 connected?

(d) Let Z denote the set of integers in the metric space (R, d) where d denotes usual
metric. Is Z compact? Justify your answer.

(e) Show that f (z) = z̄
z is not continuous at z = 0.

(f) Show that |
∮ ez

z+1 dz| ≤ 8πe4

3 .

(g) Show that f (z) =|z|2 is nowhere analytic.
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MATH(H)CC-T-14

1. Answer any three questions: 3× 2 = 6

(a) Define ring homomorphism and write properties of ring homomorphism.

(b) State Isomorphism theorem I, II & III.

(c) What is the dual space? Define dual basis. Let V be a finite dimensional vector space
over the field F. Let B be a basis for V and B′ be the dual basis of B. Then show that
B′′ = (B′)′.

(d) Define Annihilators. If S is any subset of a vector space V(F), then show that S◦ is a
subspace of V ′.

2. Answer any one question: 1× 4 = 4

(a) State Caley Hamilton’s theorem. Let T : R2 → R2 be a linear transformation such that
T(2, 3) = (0, 1) & T(0, 2) = (−1, 1). Find the matrix of T.

(b) Prove that every Euclidean domain is a principal ideal domain.

∗ ∗ ∗
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