Dumkal College

U.G. 6th Semester Internal Examination-2021

MATHEMATICS [HONOURS] Course Code: MATH(H)CC-T-13 & MATH(H)CC-T-14

Full Marks: 10+10

Time: 1 Hour

The figures in the right- hand margin indicate marks. Symbols have their usual meaning.

After completion, send answer scripts in two separate pdf files with file name indicating paper name to the WhatsApp 7001717834 within 30 minutes.

MATH(H)CC-T-13

1. Answer any **five** questions:

 $5 \times 2 = 10$

- (a) Is every Cauchy sequence in a metric space convergent? Justify your answer.
- (b) Let \mathbb{N} denote the set of natural numbers. Define

$$d(m,n) = \left|\frac{1}{m} - \frac{1}{n}\right|, m, n \in \mathbb{N}.$$

Show that the metric space (\mathbb{N}, d) is not complete.

- (c) Is $Y = \{(x, y) : y = \sin \frac{1}{x}, 0 < x \le 1\} \subseteq \mathbb{R}^2$ connected?
- (d) Let \mathbb{Z} denote the set of integers in the metric space (\mathbb{R}, d) where *d* denotes usual metric. Is \mathbb{Z} compact? Justify your answer.
- (e) Show that $f(z) = \frac{\overline{z}}{\overline{z}}$ is not continuous at z = 0.
- (f) Show that $|\oint \frac{e^z}{z+1} dz| \le \frac{8\pi e^4}{3}$.
- (g) Show that $f(z) = |z|^2$ is nowhere analytic.

MATH(H)CC-T-14

- 1. Answer any three questions:
 - (a) Define ring homomorphism and write properties of ring homomorphism.
 - (b) State Isomorphism theorem I, II & III.
 - (c) What is the dual space? Define dual basis. Let *V* be a finite dimensional vector space over the field *F*. Let *B* be a basis for *V* and *B'* be the dual basis of *B*. Then show that B'' = (B')'.
 - (d) Define Annihilators. If *S* is any subset of a vector space V(F), then show that S° is a subspace of *V*'.
- 2. Answer any **one** question:

 $1 \times 4 = 4$

 $3 \times 2 = 6$

- (a) State Caley Hamilton's theorem. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that T(2,3) = (0,1) & T(0,2) = (-1,1). Find the matrix of *T*.
- (b) Prove that every Euclidean domain is a principal ideal domain.

* * *