Dumkal College

U.G. 4th Semester 2nd Internal Examination-2024

MATHEMATICS [HONOURS] Course Code: MATH-H-CC-T-10 & MATH-H-SEC-T-2B

Full Marks: 10+10

Time: 1 Hour

The figures in the right- hand margin indicate marks. Symbols have their usual meaning.

MATH-H-CC-T-10

1. Answer any two questions:

- 2 × 3 = 6
- a) Prove that in E^2 , the set $X = \{(x, y): y^2 \ge 4x\}$ is not a convex set.
- b) Consider the game G with the following pay off matrix:

	I.	П
I	2	7
II	-1	μ

Show that G is strictly determinable, whatever $\mu(> 0)$ may be.

- c) Prove that dual of the dual is the primal itself.
- 1. Answer any **one** questions:
 - a) Find the basic feasible solution of the following transportation problem:

a_i 4

8 9

	Destination					
	2	11	10	3	7	
Origin	1	4	7	2	1	
	3	9	4	8	12	

Dectination

*b*_{*i*} 3 3 4 5 6

b) Apply the maximin and minimax principle to solve the games whose payoff matrices are given below.

	B_1	B_2	B_3
A_1	15	2	3
A_2	6	5	7
A_3	-7	4	0

1× 4 =4

MATH-H-SEC-T-2B

1. Answer any **five** questions:

- (a) Write the short note of Hamiltonian circuit.
- (b) Is any connected graph with 7 vertices and 6 edges a Tree? Justify your answer.;
- (c) Give an example of a graph that has Euler Circuit but not Hamiltonian circuit.
- (d) Write adjacency matrix of a square.

	[0]	1	0	1]
(e) Draw a graph whose incidence matrix is	1	0	0	0
(e) Draw a graph whose incluence matrix is	0	1	1	1^{\cdot}
	1	0	1	0

- (f) Write a short note about Travelling-Salesman Problem.
- (g) What is a spanning tree? Find all the spanning trees of $K_{4.}$

5 × 2 = 10