Dumkal College

U.G. 4th Semester 2nd Internal Examination-2024

MATHEMATICS [HONOURS] Course Code: MATH-H-CC-T-08 & MATH-H-CC-T-09

Full Marks: 10+10

Time: 1 Hour

 $3 \times 2 = 6$

The figures in the right- hand margin indicate marks. Symbols have their usual meaning.

MATH-H-CC-T-08

1. Answer any **three** questions:

- (a) Determine k so that the set $S = \{(k, 1, 1), (1, k, 1), (1, 1, k)\}$ is linearly dependent in \mathbb{R}^3 .
- (b) Examine if the set $S = \{(x, y, z) \in \mathbb{R}^3 : x = 1\}$ is a subspace of \mathbb{R}^3 .
- (c) Check whether $(\mathbb{Z}[\sqrt{3}], +, \cdot)$ is a field or not where $\mathbb{Z}[\sqrt{3}] = \{a + b\sqrt{3}: a, b \in \mathbb{Z}\}$.
- (d) Show that $\frac{\mathbb{Z}}{2\mathbb{Z}} \cong \frac{5\mathbb{Z}}{10\mathbb{Z}}$.

(e) Let V be the space of all real polynomials p(x) of degree <3. If D be a linear mapping on V defined by $D(p(x)) = \frac{d}{dx}p(x), \ p(x) \in V$, find the matrix of D relative to the ordered basis $\{1, x, x^2\}.$

- 2. Answer any one questions:
 - (a) Diagonalise the matrix $A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$.
 - (b) Prove that the characteristic of an integral domain is either zero or a prime.

1× 4 =4

MATH-H-CC-T-09

 $2 \times 3 = 6$

 $1 \times 4 = 4$

1. Answer any two questions:

- a) Let $f(x, y) = \begin{cases} xy \text{ when } |y| \le |x| \\ -xy \text{ when } |x| \le |y| \end{cases}$ Show that $f_x(0,1) = -1$ and $f_y(1,0) = 1$
- b) Find the directional derivative of $\phi(x, y, z) = x^3 + y^3 + z^3$ at (1, -1, 2) in the direction of $\hat{i} + 2\hat{j} + \hat{k}$.
- c) If $B_{ij} = A_{ji}$, where A_{ij} is a covariant tensor. Show that B_{ij} is a tensor of order 2.
- 2. Answer any one question:
 - a) If B_{ij} are components of a covariant tensor of second order and C^i , D^j are components of two contravariant vectors. Show that $B_{ij}C^iD^j$ is an invariant.
 - b) Show that the function $f(x, y) = \begin{cases} \frac{xy(x^2 y^2)}{x^2 + y^2} & \text{, when } (x, y) \neq (0, 0) \\ 0 & \text{, when } (x, y) = (0, 0) \end{cases}$

does not satisfy the condition of Schwarz's theorem but $f_{xy}(0,0) \neq f_{yx}(0,0)$.
