Dumkal College U.G. 6th Semester 1st Internal Examination-2024

MATHEMATICS [HONOURS] Course Code: MATH-H-CC-T-13 & MATH-H-CC-T-14

Full Marks: 10+10

Time: 1 Hour

 $2 \times 3 = 6$

 $1 \times 4 = 4$

The figures in the right- hand margin indicate marks. Symbols have their usual meaning.

MATH-H-CC-T-13

- 1. Answer any **two** questions:
 - a) Show that $f(z) = \frac{\overline{z}}{z}$ is not continuous at z = 0.
 - b) Let \mathbb{N} denote the set of natural numbers. Define

$$d(m,n) = \left|\frac{1}{m} - \frac{1}{n}\right|, m, n \in \mathbb{N}.$$

Show that the metric space (\mathbb{N}, d) is not complete.

- c) State Heine Borel theorem. Give an example of a compact set.
- 2. Answer any **one** question:
 - a) Prove that a function f(z) = u(x, y) + iv(x, y) tends to $l = \alpha + i\beta$ as z = x + iy tends to $z_0 = x_0 + y_0$ if and only if $u(x, y) \rightarrow \alpha$ and $v(x, y) \rightarrow \beta$ as $(x, y) \rightarrow (x_0, y_0)$.
 - b) Prove that union of two compact sets is also compact.

MATH-H-CC-T-14

- 1. Answer any three questions:
 - a) If X is a Poisson μ variate & P(X = 0) = P(X = 1), then find the value of μ and find $P(X \ge 1)$.
 - b) State weak law of large numbers.
 - c) Use Tchebycheff's inequality to show that for a random variable having p.d.f

$$f(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & \text{elsewhere} \end{cases}$$

$$P\left\{ \left| X - \frac{1}{2} \right| \le 2; \frac{1}{\sqrt{12}} \right\} \ge \frac{3}{4}.$$

- d) Let T_1 and T_2 be two unbiased estimators of the parameter θ . Under what condition $pT_1 + qT_2$ will be an unbiased estimator of θ .
- e) Show that the sample mean is an unbiased estimate of the population mean.
- 2. Answer any one question:

 $1 \times 4 = 4$

a) Determine the value of c such that f(x) defined by

$$f(x) = \begin{cases} cx(1-x), & 0 < x < 1\\ 0, & \text{elsewhere} \end{cases}$$
 is a probability density function. Also find $P(X > \frac{1}{3})$.

b) Find the maximum likelihood estimates of the parameters m and σ in normal (m, σ) population for a sample size n.

```
****
```

 $3 \times 2 = 6$