U.G. 2nd Semester Examination - 2023 PHYSICS [HONOURS]

Course Code: PHY-H-CC-T-04 (Waves & Optics)

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate marks Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

Answer any five questions: 1.

 $2 \times 5 = 10$

- Show that acoustic pressure satisfies the differential wave equation.
- What are Newton's rings? b)
- Why is it necessary to use narrow source for c) Biprism and extended source for Newton's ring?
- In the transverse arrangement of Melde's d) experiment, the string vibrates in 3 loops when the tension is 0.32Kgwt. Determine the tension when the string vibrates in 2 loops in the longitudinal arrangement.

[Turn Over]

- What is the basic principle of holography?
- What is non reflecting? Give one application
- The displacement equation of a simple harmonic oscillator is $x = a Sin(\omega t + \varphi)$. Find out a relation between velocity (v) and acceleration(f).
- h) Explain how conservation of energy is obeyed in interference.

Scharle

GROUP-B

2. Answer any **two** questions:

 $5 \times 2 = 10$

a) Explain how the Newton's ring experiment can be used to determine the refractive index of an unknown liquid. Give proper diagram.

5

- b) Calculate the minimum thickness of coating on a glass plate so that the surface acts as non reflecting. (Assume the refractive index of coating material is n_c).
- c) Explain in brief how does straight fringes are produced in Michelson Interferometer. Give proper diagram.

CHICAN

having small frequency difference Δ_{ω} . Show that the resultant pattern will be repeated after a time $T=\frac{2\pi}{\Delta_{\omega}}$. Draw the Lissajous figures resulting from two rectangular simple harmonic motion having frequency ratio 1:2 at phase ditferences $0,\pi/4,\pi/2,3\pi/4,\pi$.

2 + 3

GROUP-C

Answer any two questions:

 $10 \times 2 = 20$

- 3. a) The displacement of a stationary wave at any point 'x' and at any time 't' is given by $Y(x,t) = 2a CosKx Cos \omega t$. Show that average energy density of a stationary wave is $\overline{E} = \rho_0 a^2 \omega^2$, where ρ_0 is the density of the medium, a is amplitude, ω is the angular frequency, and K is propagation constant.
 - b) Discuss the phenomena of Fraunhofer diffraction in a double slit with proper diagram.

an Augrl

The phase velocity v of deep water wave of wavelength λ is given by $v^2 = \frac{g\lambda}{2\pi} + \frac{2\pi s}{p\lambda}$, where S is the surface tension, g is gravitational acceleration, ρ is the density of liquid. (i) Find the wavelength λ_0 of the waves which do not disperse in water. (ii) Show that for wavelength $\lambda << \lambda_0$ the group velocity vg is $\frac{3v}{2}$.

-1

- b) Show that the resolving power increases with the total no of lines of the grating element.

 (2+4)+4
- 5. a) For a plucked string show that the amplitude of the s-th harmonic is proportional to 1/s².
 - b) Define resolving power of a grating with proper diagram. 6+4
- 6. a) With proper diagram, describe briefly the Fresnel's half period zones for plane wave.
 - b) Calculate the radius and area of nth zone of Fresnel's half period zones.
 - c) What is the difference between convex lens 5+3+2 and zone plate.