691/3 Phs.

UG/5th Sem/PHY-H-DSE-T-01/22

U.G. 5th Semester Examination-2022

PHYSICS

[HONOURS]

Discipline Specific Elective (DSE) Course Code: PHY-H-DSE-T-01

(Advanced Mathematical Physics-II)

Full Marks: 60

Time: $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:

 $2 \times 5 = 10$

- a) Define Euler angles.
- b) What is meant by conditional probability?
- c) What is cyclic coordinate?
- d) What is generalised potential?
- e) What is probability density function?
- f) What is random variable in probability?
- g) State least action principle.

[Turn Over]

2. Answer any four question:

 $5 \times 4 = 20$

a) Show that for a system of one degree of freedom the transformation

$$Q = arc \left(tan \frac{\alpha q}{p} \right), P = \frac{\alpha q^2}{2} \left(1 - \frac{p^2}{\alpha^2 q^2} \right)$$

is canonical.

5

- b) Derive Lagrange's equations from d'Alembert's principle. 5
- c) Show that $q_k = [q_k, H]$, where q_k is the generalized coordinate and H is the Hamiltonian. What are the condition for canonical transformation? 2+3
- d) State and explain binomial probability distribution function with example. 5
- e) State and prove Bayers theorem. Define mean, variance and standard deviation of a variable.

2 + 3

 f) Find the expression for standard deviation of Poisson distribution. 3. Answer any three questions:

 $10 \times 3 = 30$

- a) i) Define cyclic groups.
 - ii) Let G be a group. Suppose $a, b \in G$, such that (a) ab=ba and (b) [0(a), 0(b)]=1. Show that 0(ab) = 0(a)0(b).
 - three particles, of equal mass m, constrained to move on a straight line.

 They interact via a potential that depends only on the relative distance between them. Give the constant of the motion, associated with spatial translations.

 $2\frac{1}{2}+2\frac{1}{2}+5$

- b) State and prove Hamilton's principle. Use Hamilton's principle to find the equation of motion of the one dimensional harmonic oscillator.
- c) i) A dynamical system has generalized co-ordinates q_i and generalized momenta p_i . Verify the following properties of the Poisson brackets:

$$[q_i, q_j] = [p_i, p_j] = 0, [q_i, p_j] = \delta_{ij}.$$

- ii) If p is the momentum conjugate to a position vector \mathbf{r} and $\mathbf{L} = \mathbf{r} \times \mathbf{p}$, evaluate $\left[L_x, L_y \right], \left[L_y, L_x \right]$ and $\left[L_{x_1} L_x \right]$. 5+5
- d) i) Show that minimum distance between two points in a plane is a straight line.
 - ii) Derive Euler-Lagrange's equation of motion using the method of calculus of variations.

 5+5
- e) Discuss the Homomorphism and Isomorphism of group. Differentiate between spherical top and symmetric top. Write down the principle of least squares.

 3+4+3