U.G. 2nd Semester Examination - 2023

PHYSICS

[PROGRAMME]

Course Code: PHY-G-CC-T-02(A-D)

Full Marks: 40

Time: $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer all the questions from selected Option.

OPTION-A

PHY-G-CC-T-02A

(Thermal Physics)

GROUP-A

1. Answer any five questions:

 $2\times5=10$

- a) What are an isolated and a closed system in thermodynamics?
- b) What are extensive and intensive variables in thermodynamics? Give examples of each.
- c) Show that the work done by a gas when it expands from V₁ to V₂ is given by

$$W = \int_{V_1}^{V_2} p dV$$

- d) Draw p-V indicator diagrams for isochoric, isobaric, isothermal and adiabatic processes.
- e) Why adiabatics are steeper than isothermals?
- f) What is mean free path of gas molecules in a gas? Write down its expression.
- g) Define Boyle's temperature. What would be the nature of the pV-p plot of a real gas at its Boyle's temperature?
- h) At what temperature will root mean square velocity of nitrogen molecule be double its value at N.T.P. when pressure remains constant?

GROUP-B

Answer any two questions:

 $5 \times 2 = 10$

a) State the principle of equipartition of energy.

If the number of degrees of freedom per molecule of a perfect gas is f, show that,

$$\gamma = 1 + \frac{2}{f}$$
 Where γ is the ratio of the specific

heats of gas at constant pressure and at constant volume. Calculate the values of γ for monatomic, diatomic and triatomic molecules.

$$1+2\frac{1}{2}+1\frac{1}{2}$$

- b) Write down the van der Waal's equation for n moles of a real gas. Prove that $\frac{RT_C}{P_CV_C} = \frac{8}{3}$ for van der Waal's gas.
- and irreversible process? Draw indicator diagram (p-V graph) of Carnot's cycle. A Carnot engine whose low temperature reservoir is at 7°C has an efficiency of 40%. To increase the efficiency to 50% by how many degrees should the temperature of the source be increased?

 2+1+2
- d) State the characteristics of Brownian motion. A perfect gas at 27°C is suddenly compressed to 8 times its original pressure. Find its rise in temperature, if $\gamma = 1.5$. $2\frac{1}{2}+2\frac{1}{2}$

GROUP C

Answer any two questions:

 $10 \times 2 = 20$

- i) Write down the basic assumption of kinetic theory of gases.
 - Derive an expression for the pressure of a gas from the standpoint of kinetic theory.
 - iii) Show that the pressure exerted by a perfect gas is two-thirds of the kinetic energy of the gas molecules per unit volume.

- iv) The average kinetic energy of a molecule of hydrogen at 0°C is 5.64×10⁻²¹ joule and the gas constant R = 8.32 joule mole⁻¹K⁻¹.

 Calculate Avogadro's Number. 2+4+2+2
- 4. i) What are mean, rms and most probable velocities of gas molecules?
 - ii) Find their values from Maxwell's law of distribution of molecular velocities and show that

$$C_{mp}: C_m: C_{rms} = \sqrt{2}: \sqrt{\frac{8}{\pi}}: \sqrt{3}$$

- iii) Explain the difference between a perfect gas and a real gas. 3+6+1
- 5. Using thermodynamic potentials derive Maxwell's four relations. $2\frac{1}{2}+2\frac{1}{2}+2\frac{1}{2}+2\frac{1}{2}$
- 6. What do you mean by enthalpy function? Show that in throttling process (J-T effect), the enthalpy in the final equilibrium state is equal to the enthalpy in the initial equilibrium state. Find the expression of inversion temperature for van der Waal's gas.

2+3+5

OPTION-B

PHY-G-CC-T-02B

(Electricity and Magnetism)

GROUP-A

1. Answer any five questions:

- $2 \times 5 = 10$
- a) State and explain Gauss divergence theorem and Stoke's theorem of vectors.
- b) Check whether the following represent electrostatic fields or not:

$$\vec{E} = A[y^2t\hat{\imath} + (2xy + z^2)t\hat{\jmath} + 2yzt\hat{k}]$$

- c) State and explain Gauss law in dielectric medium.
- d) What is Lorentz force? Explain with diagram.
- e) Show that electric field is always perpendicular to the equipotential surface.
- f) Write the differential form of Gauss's law for dielectric.
- g) Define polarization vector of a dielectric.
 What is its physical significance?
- h) Find a vector that is orthogonal to the plane containing the points P=(3, 0, 1), Q=(4, -2,1) and R:(5, 3, -1).

Answer any two questions:

 $5 \times 2 = 10$

a) Prove that $\vec{\nabla} \times (\phi \vec{V}) = (\vec{\nabla} \phi) \times \vec{V} + \phi (\vec{\nabla} \times \vec{V})$ for a scalar field $\phi(x, y, z)$ and a vector field $\vec{\nabla}(x, y, z)$.

Now take \vec{V} to be a non-zero constant vector field \vec{C} and use Stoke's theorem to prove that

$$\oint_C \phi d\vec{r} = \iint_S d\vec{S} \times \nabla \phi \ .$$

2 + 3

- b) Write the differences between dia-, para- and ferro magnetic materials. Define dielectric susceptibility of a medium. What is linear dielectric? Give example.

 3+1+1
- c) Derive the expression of Potential and Electric field due to an electric dipole of dipole moment 'm' at a point at a distance 'r' from on its axial line.
- d) What is electric field intensity (\vec{E}) and electric potential (φ) at a point P due to a charge +q at a distance r. Find the relation between \vec{E} and φ . Calculate $\vec{\nabla} \times \vec{E}$. 1+2+2

GROUP- C

Answer any two questions:

 $10 \times 2 = 20$

- 3. a) Calculate the electric field inside and outside of a uniformly charged solid sphere.
 - b) Show that the electrostatic self energy of a uniformly charged sphere is $\frac{1}{4\pi\epsilon_0} \frac{3Q^2}{5a}$? Where 'a' is the radius of the sphere, Q is the charge on the sphere.
 - c) Define magnetic vector potential and scalar potential. 4+4+2
- 4. a) State and explain equation of continuity of current. What is Displacement current?
 - b) Consider a long straight wire XY carrying current I(t). Calculate the flux through a rectangular wire ABCD in the plane of the wire XY. Calculate induced e.m.f around ABCD and comment about the direction of induced current in ABCD.
 - c) What is a parallel plate capacitor? Find an expression for its capacitance. 2+(2+1+1)+4
- 5. a) Write down the relation between B, H and M. What is ferromagnetism? Draw magnetization curves for soft iron and steel on the same graph as each is taken through a complete cycle of magnetic field.

- b) Show that the hysteresis loss per unit volume per cycle of magnetization is equal to the area enclosed by the B-H loop.
- c) Derive an expression of magnetic force on a current carrying wire. (1+1+2)+3+3
- 6. a) State and explain Faraday's laws of electromagnetic induction.
 - b) Starting from the expression of magnetic vector potential $\vec{A} = \frac{\mu_0 I}{4\pi} \int \frac{d\vec{l}}{r}$, obtain the expression $\vec{B} = \frac{\mu_0 I}{4\pi} \int \frac{d\vec{l} \times \vec{r}}{r^2}$, where $\vec{B} = \vec{\nabla} \times \vec{A}$.
 - c) Calculate self inductance L of a circular coil of radius 'a' having 'n' turns. 3+4+3

OPTION-C

PHY-G-CC-T-02C

(Waves & Optics)

GROUP-A

1. Answer any five questions:

 $2 \times 5 = 10$

- a) State and explain Fourier's theorem.
- b) Determine the ratio of the frequencies in horizontal and vertical direction for the given Lissajous figure:

- Determine the amplitude, wave velocity, wave length and initial phase angle for the wave $y = 5 \sin(30\pi t 10x)$.
- d) What do you mean by reverberation and reverberation time?
- e) Define wavefront. Give an example of spherical wavefront.
- Determine the thickness of a half wave plate and quarter wave plate for light wave of $\lambda = 5000\text{\AA}$; given $\mu_0 = 1.65$ and $\mu_c = 1.55$.

- Distinguish between interference and g) diffraction.
- Why two candles do not produce intereference h) pattern?

GROUP-B

- $5 \times 2 = 10$ Answer any two questions:
 - For a ray of light falling in the interface of two materials of different refractive indices and transmission coefficients, derive the Stokes relations: $t't+r^2=1$ and r=-r'; the symbols have their usual meanings. What are Fresnel half period zones? Define zone plate. 3+1+1=5

- Define intensity and loudness. Using b) molecular theory give the origin of surface tension. Write down the SI unit of surface 2+2+1=5tension.
- Explain the nature of Lissajous figure obtained c) due to superposition of the waves $x = 5 \sin \omega t$ and $y = 5 \cos \omega t$.

Show that the number of beats produced per second is the dilference between the frequencies of the sources. 2+3=5

1+4=5Write a short note on Nicol prism. d)

GROUP-C

Answer any two questions:

 $10 \times 2 = 20$

- a) Derive the expression for the fringes produced in the Young's double slit experiment.
 - b) Explain how the wave length of monochromatic light can be determined using Michelson's Interferometer. State and explain Brewster's law.

 4+(4+2)=10
- 4. What do you mean by positive and negative crystal? State and explain the laws of transverse vibration in a stretched string. Define angle of contact. What do you mean by synclastic and anticlastic surface? Write down the SI unit of viscosity.

2+3+2+2+1=10

- 5. A displacement curve is given by f(t) = A for 0 < t < T/2 and f(t) = -A for T/2 < t < T; where A is a constant. Draw the graph of f(t) and obtain the Fourier series expansion for f(t). Define bel and phon. 6+4=10
- 6. Write down the characteristics of a good auditorium.
 Considering necessary assumptions derive Sabine's formula of optimum reverberation. What is the difference between Fresnel and Fraunhofer diffraction?

 3+5+2

OPTION-D

PHY-G-CC-T-02D

(Digital Systems & Applications)

GROUP-A

1. Answer any five questions:

 $2 \times 5 = 10$

- a) Express the following decimal number in binary forms: 23.8125.
- b) Use 2's compliment to perform the binary subtraction 11011 01101.
- c) Why XOR gate is called inequality detector?
- d) State De-Morgan's theorem.
- e) What is virtual ground in OP-AMP?
- f) Can you calculate 7 in 8085 microprocessor? Explain.
- g) What are volatile and non-volatile memories available in a microprocessor?
- h) Write the full form of ALU in microprocessor.

GROUP-B

2. Answer any two questions:

 $5 \times 2 = 10$

a) Draw the schematic diagram and derive expression for the output voltage for a summing amplifier or adder. List the main characteristics of an ideal OP-AMP.

(1+2)+2

- b) How many half adder are required to make a full adder? Explain it with a block diagram. Show how an OR and AND gates can be constructed with NAND gates only. 1+2+2
- c) What is demultiplexer? Give the circuit diagram of a 1-line to 4-line demultiplexer using basic gates.

 1+4
- d) Show how an S-R flip-flop can be converted into a J-K flip flop. What do you mean by edge triggering in a flip flop?

 3+2

GROUP-C

3. Answer any two questions:

10×2=20

a) Explain how the phase difference between two

 a.c voltages of same frequency can be
 measured by a CRO using Lissajous figure.
 What do you mean by deflection sensitivity?

 Derive an expression for deflection sensitivity

 of a CRO using electrostatic deflection.

3+2+5

b) What is a counter? Construct a four bit ripple counter. What do you mean by up and down counter? Construct a 4-bit shift resister using D-type flip-flops.

1+4+1+4

- c) What do you mean by an 8-bit microprocessor? Draw the block diagram of Intel 8085 microprocessor. With reference to 8085 microprocessor explain the function of the following: Accumulator, ALU, Program counter, Interrupt control and Temporary resistor.

 2+3+5
- d) Using Karnaugh Map simplify the logic function:

+BC+A+ABC

Using NAND only generate the function: B+A. What is a decoder? Explain with logic circuit how BCD digits can be decoded as decimal digit.

4+2+4