U.G. 4th Semester Examination - 2024

PHYSICS

[HONOURS]

Course Code: PHY-H-CC-T-9

(Elements of Modern Physics)

Full Marks: 40

Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any **five** questions:

2×5=10

- Define Bohr Radius and estimate numerical value for it.
- b) Explain what was learned about the quantization of radiation from Franck-Hertz experiment. Indicate which of the measured effects were non-classical and why, and explain how they can be understood as quantum phenomena.
- c) A photon has of energy 4.2×10^{-19} J. What is its wavelength?

- d) An electron of energy 200 eV is passed through a circular hole of radius 10⁻⁴ cm. What is the uncertainty introduced in the angle of emergence?
- e) Why do the stable medium nuclei contain excess neutrons?
- f) Determine the activity of 1 gm sample of 90 Sr whose half life against β decay is 28 years.
- g) What are magic numbers in the context of shell structures of nucleons inside nuclei?
- h) What do you understand by spectral line width of a Laser?
- 2. Answer any two questions:

 $5 \times 2 = 10$

- a) State and explain radio-active decay law. Radium being a member of the uranium series occurs in uranium ores. If the half-lives of uranium and radium are respectively 4.5×10° and 1,620 years, calculate the relative proportions of these elements in a uranium ore, which has attained equilibrium and from which none of the radioactive products have escaped.

 2+3
- b) Illustrate basic differences between spontaneous emission and stimulated emission of radiation. At what temperature the rates of spontaneous and stimulated emissions are equal? Assume $\lambda = 5000A$.

d)

c)

gh

he

e?

ess

Sr

ell

dth

10

um

in

and

ars,

ese

ned

the

2+3

- eous b) tion. and $\lambda =$ 3+2

equal to 10-13 cm. From this result, estimate the kinetic energy of the proton inside the nucleus. What would be the kinetic energy for an electron if it had to be confined within a similar nucleus? 3+2What is photo-electric effect? Explain Einstein's photo electric equation. A light source of wavelength λ illuminates a

Calculate the uncertainty in the momentum of a

proton which is confined to a nucleus of radius

kinetic energy of 1.00 eV. A second light source with half the wavelength of the first ejects photoelectrons with a maximum kinetic energy molos of 4.00 eV. Determine the work function of the metal. Answer any two questions: $10 \times 2 = 20$

metal and ejects photoelectrons with a maximum

- one-dimensional time-independent Write Schrodinger equation and explain the meanings of the symbols in that equation.
- An electron is trapped in an infinitely deep potential well of width $L = 10^6$ fm. Solve the Schrodinger equation and hence find the normalized wave function and energy for n th. state where n is an integer (n > 0).

- c) Calculate the wavelength of photon emitted from the transition $E_4 \rightarrow E_3$. (1+2)+(3+2)+2
- 4. a) The relation for total energy (E) and momentum (p) for a relativistic particle is $E^2 = c^2p^2 + m^2c^4$, where m is the rest mass and c is the velocity of light. Using the relativistic relations $E = \hbar \omega$ and $p = \hbar k$, where ω is the angular frequency and k is the wave number, show that the product of group velocity and the phase velocity is equal to c^2 .
 - b) Consider a stream of particles with energy E travelling in one dimension from $x = -\infty$ to ∞ . The particles have an average spacing of distance L. The particle stream encounters a potential barrier at x = 0. The potential can be written as V(x) = 0 if x < 0

$$= V_b \text{ if } 0 < x < a$$
$$= 0 \text{ if } x > a$$

Suppose the particle energy is smaller than the potential barrier. For each of the three regions, write down Schrodinger's equation and calculate the wave-function ψ and its derivative $d\psi/dx$. Derive the expression for the transmission amplitude. 2+(2+2)+4

- 5. a) Derive the kinetic energy of α -particle in terms of Q value of the decay process.
 - b) Draw a typical β-ray spectrum for (β-) decay. Why Pauli's postulate of neutrino was necessary to explain this spectrum?
 - c) Discuss briefly the phenomenon of pair production by gamma photon.
 - d) What are the prompt and delayed neutrons in a 2+(1+2)+3+2 Fission process?
- 6. a) What are the Coulomb and asymmetric terms of the semi-empirical mass-formula?
 - b) How is the radius of a nucleus related to its mass number?
 - c) $_{14}^{27}Si$ and $_{13}^{27}Al$ are mirror nuclei with mass difference 6 MeV. Estimate their radius?
 - d) Using the semi empirical mass formula, find the atomic number of the most stable nucleus for a given mass number A. Hence explain which nuclei would expect to be the most stable among ${}_{3}^{7}Li$ would expect to be the most stable among ${}_{3}^{7}Li$ or ${}_{3}^{8}Li$ and ${}_{4}^{9}Be$ or ${}_{4}^{10}Be$ [given $a_{c}=0.71 \text{MeV}$ and $a_{n}=22.7 \text{ MeV}$]