U.G. 5th Semester Examination-2024

PHYSICS

[HONOURS]

Discipline Specific Elective (DSE)

Course Code: PHY-H-DSE-T-02

(Nuclear & Particle Physics)

[New Syllabus]

Full Marks: 60

Time: $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

1. Answer any ten questions:

 $2 \times 10 = 20$

- a) Distinguish between a cyclotron and a betatron.
- b) Explain that only α -particle is emitted by radioactive nuclei but not proton or neutron.
- c) Write down the selection rules for β -transition.
- d) It is observed that 3.67×10^{10} α -particles are emitted per sec. per gm of 226 Ra. Calculate the half-life of 226 Ra.
- e) Radioactivity is a statistical phenomenon explain it.
- f) What do you mean by radioactive equilibrium? Write down the condition of secular equilibrium.

[Turn Over]

- g) Define the mean life (τ) of a radioactive element. Show that the mean life (τ) of a radioactive element is equal to the inverse of its decay constant (λ) .
- Write down the characteristics of nuclear force.
- i) Find the parities of the following two functions: (i) $\psi(x) = \tan(\pi x/a)$ (ii) $\psi(x) = \cos(\pi x/a)$.
- j) Explain the Mössbauer effect.
- k) What is pick-up reaction? Give an example.
- 1) What is weak interaction paradox of single particle shell model? How was the paradox solved?
- m) Write down the quark structure of Δ^{++} , Σ^{-} , K^{+} and Λ^{0} .
- Explain the soft and hard components of cosmic rays.
- o) Explain Fermi gas and degenerate gas.

GROUP-B

2. Answer any **four** questions : $5 \times 4 = 20$

a) Define the packing fraction (f). Derive the relation between packing fraction and atomic mass M(Z,A). Draw the packing fraction versus atomic number(A) curve and explain. 1+2+2

b) Write down charge and baryon numbers of all quarks. Using conservation of charge, spin and strangeness find which of the following reactions are allowed:

- i. $K^{-} + p^{+} \rightarrow \Xi^{0} + K^{0}$ ii. $K^{-} + p^{+} \rightarrow K^{0} + n^{0}$ iii. $\Pi^{-} + p^{+} \rightarrow \Sigma^{0} + n^{0}$ 2+3
- Explain the Cerenkov radiation. Describe the construction and action of Cerenkov counter.

2+3

- d) Write down at least five conservation laws of nuclear reactions X(x,y)Y and explain them $(X + x \rightarrow Y + y)$.
- e) Calculate the disintegration energy for orbital electron capture: $z^AX + {}^0_{-1}e \rightarrow z_{-1}{}^AY$. Explain the Pauli's neutrino hypothesis and write down the neutrino's properties.
- f) Calculate the time in which the activity of a sample of thorium reduces to 90% of its original value. Assume the half-life of thorium to be 1.4×10¹⁰ years.

GROUP-C

3. Answer any **two** questions: $10 \times 2 = 20$

a) Write down at least three successes and limitations of shell model. Obtain an expression for the binding energy and mass formula of a nucleus in the ground state. For even A, there are two mass-parabola curve – explain it.

3+5+2

- b) Explain the internal conversion phenomenon of γ-decay. A beam of monoenergetic γ-rays is incident on an Al-sheet of thickness 10 cm. The sheet reduces the intensity of the beam to 21% of its original value. Calculate the linear and mass absorption coefficients (given density of Al is 2700 kg.m⁻³). Draw and explain the Kurie plot.
- Explain the longitude effect and east-west asymmetry in the context of cosmic rays. Draw the $Y-I_3$ diagram for baryon decuplet for $J^p = 3/2^+$ and explain it. $\left(2\frac{1}{2} + 2\frac{1}{2}\right) + 5$
- d) i) Assuming the collision to be elastic, show by using the Q-equation that the kinetic energy K_x of the target particle is given by

$$K_X = 4 K_x \frac{m_x M_X}{(m_x + M_X)^2} \cos^2 \theta.$$

ii) What is quenching of a G.M. counter?

Explain the self-quenching of G.M. counter. Write down the two characteristics of G.M. counter.

5+(1+2+2)