U.G. 5th Semester Examination - 2024

PHYSICS

[HONOURS]

Course Code: PHY-H-CC-T-12
(Statistical Mechanics)
[New Syllabus]

Full Marks: 40

Time: $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

1. Answer any five questions:

 $2\times5=10$

- a) Define the concept of microstates and macrostates in statistical mechanics.
- b) State the postulate of equal a priori probability.
- c) What is λ transition in liquid Helium?
- d) What is the Boltzmann entropy formula? Write its expression.
- e) Explain the concept of the partition function.

Show that for a canonical system, mean energy f) is given by -

$$\langle E \rangle = -\frac{\partial}{\partial \beta} (\ln Z)$$

Where Z is canonical partition function.

- How many ways can 5 Bosons be arranged in g) three quantum states?
- Write the expression for Bose-Einstein h) distribution and mention one application.

GROUP-B

Answer any two questions: 2.

 $5 \times 2 = 10$

Discuss the differences between Bosea) Einstein, Fermi-Dirac, and Maxwell-Boltzmann statistics. Provide examples of systems where each applies. What is meant by Fermi-level?

2+1+2

- What is the phase trajectory of a simple b) pendulum performing small oscillations? Show that the area enclosed by the trajectory is equal to the product of the total energy E and the time period T of the pendulum.
- A system consists of three distinguishable particles with energy levels $0, \varepsilon, 2\varepsilon$. Calculate the partition function, entropy and the average 3+1+1 energy at temperature T.

d) Find the variation of the specific heat C_v as a function of the temperature T for photon gas confined in ID box.

GROUP-C

Answer any two questions:

 $10 \times 2 = 20$

- 3. a) Consider a photon gas confined in a volume V at temperature T. Show that the number of photons in this volume is proportional to T^3 .
 - b) A photon gas is confined in volume V at temperature T. If the volume is increased adiabatically to 2V, determine the final temperature.
 - c) Derive Wein's displacement law from Planck's law. 3+2+5
- 4. a) A particle in 1D has energy

$$E = \frac{p^2}{2m} + \lambda q^4$$

where q and p are the generalized coordinate and momentum respectively. Show that heat capacity of a gas comprising of N such particles is

$$C_V = \frac{3}{4}Nk$$

b) The grand canonical partition function for an ideal gas is given by

$$Z_G(T, V, \mu) = \exp\left[e^{\mu/kT} \frac{V}{\lambda^3}\right]$$

where $\lambda = \frac{h}{\sqrt{2\pi mkT}}$ is the thermal de Broglie wavelength. Calculate average number of particles and hence calculate the equation of state of the system.

- c) Explain why microcanonical canonical and grand canonical ensembles give almost same results for a system with large number of particles?

 4+3+3
- 5. a) Define Bose-Einstein condensation and explain the conditions under which it occurs.
 - b) Derive the critical temperature T_C for Bose-Einstein condensation for a system of non-interacting bosons in three dimensions.
 - c) Calculate T_C for 10^{20} bosons in a volume of 1cm^3 . 3+4+3
- 6. a) Sketch the Fermi-Dirac distribution function and its derivative for T = 0 K and T > 0 K showing clearly the Fermi energy.
 - b) Explain physically how the electronic specific heat of a metal behaves as a function of temperature.
 - c) Deduce the pressure-volume relationship for a free electron gas obeying Fermi-Dirac statistics at 0K. Hence find an expression for the bulk modulus of the gas.

 3+3+4