Interference ..::

5.3. INTERFERENCE DUE TO PLANE PARALLEL THIN FILM

A plane parallel thin film is transparent film of uniform thickness with two parallel
reflecting surfaces. The example is a thin glass film. Light wave generally suffers multiple
reflections and refractions at the two surfaces. There are two cases of interference as given
below

5.3.1 Interference in Case of Reflected Light

Let us consider a thin film of thickness 7 as shown in figure 5.1. A monochromatic light
ray SA is incident on a thin film with an angle of incident i as shown in figure. The film is
made of a transparent material (say glass) of refractive index ux. Some part of light ray
reflected at point A along the direction AB and some part of light transmitted into the film
along AC direction. The ray AC makes an angle of refraction r at point A, and the angle r
becomes angle of incident ACN at point C. Some part of light of ray AC again reflected in
the direction CD which comes out from the film along the direction DE. The light rays AB
and DE come together and they can produced interference pattern on superposition.
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Fig 5.1
The path difference A between rays AB and DE is given as
A= (AC+DC) in film- AL in air.
Since optical path in air = p X optical path in a medium
Therefore, path difference A can be given as

A=u (AC+DC) - AL

t t
From figure 5.1, we have, cost=— or AC=—— and DC=
AC COsST cosT

Again, AL=ADsini=(AN+ND)sin1
=(ttanr+ttanr)sini=2ttanr Sin i
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A= £ 2t tanrsini = —— — 2ut (sinr)
CosT CosrTr

= 2u—— (1= sin?r) = .
ZuCO”(l sin“r) = 2ut cos




According to Stock’s treatment, if a wave is reflected form a denser medium it involves a
path difference of A/2 or phase difference or 7. Therefore, net path difference

A=2ut Cos r — % _______ (5.1)

Condition of Maxima: For maxima or bright fringes the path difference should be ni
where n 1s integer number givenasn=0,123 ... .
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or 2ut Cos r=( > . (5.2)
. . : . 2n+1
Thus maxima occur when optical path difference is ( 5 A
Condition for minima: Minima occur when the path difference is order of {2]’12_1 )A. Then
A=2ut Cos r — a_ {Zn_l )A
2 2
or 2utCosr = mnd . (5.3)

5.3.2 Interference in Case of Refracted Light

A light ray SA is incident at point A on a film of refractive index p as shown in figure
5.2. Some part of light ray reflected at point A and some part of light transmitted into the film
along AB. In case of interference due to refracted light we are not interested in the reflected
light. At point B some part of light is again reflected along direction BC, then again reflected
at point C and finally refracted at point D and comes out form the medium along DF
direction. Now the light rays coming along BE and DF are coherent and can produce
interference pattern in the region of superposition.
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Figure 5.2
In this case path difference A is given as
A= (BC+CD) in film — BN in air

As Calculated in case of reflection, the path difference comes out




A=2ut Cos r

In this case there i1s no correction according to Stoke’s treatment as no wave from rarer
medium is reflected back to denser medium. Therefore this is net path difference.

For maxima or bright fringes, A= 2pt Cosr=ni

For minima or dark fringes, A=2putCosr= {22—_1).&

5.4 INTERFERENCE IN A WEDGE SHAPED FILM

In a wedge shape film, the thickness of the film at one end is zero and it increases
consistently towards another end. A glass wedge shaped film is shown in figure 5.3. Similarly
a wedge shaped air film can be formed by using two glass films touch at one end and
separated by a thin wire at another end.
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Figure 5.3

The angle made by two surfaced at touching end of wedge 1s called angle of wedge as
shown © in figure 5.3. The angle is very small in order of less than 1°. Path difference
between two reflected rays BE and DF 1s given by

A= (BC+CD) in film — BE in air
=u (BC+CD) - BE

=p (BC+CI) - BE + CD=CI
=p(BN+ND-BE . (5.4)
In right triangle A BED, sin i = g
Similarly in A BND, sinr = %

Refractive index u can be given as

_3mt_B® ot BE=uBN
Sinr BN

Putting this value in equation (5.4) we get




A=p(BN+NI)-uBN=puNI (5.5)

Now in A DNI, cos(r+6) = =
or cos(r+6_'}=% = NI=2tCos(r+ 0O)
Putting this value in equation (5.5)
Path difference, A=u 2tCos(r+60) . (5.6)

Since the light is reflecting from a denser medium therefore according to stokes treatment a
path change of &/2 occurs. Now net path difference

A=2tCos(r+0O)-N2 L. (5.7)
For bright fringes the path difference should be in order of A = nk where # 1s an integer (n= 0,
1,2.....0).

2utCos(r +0)—A/2=nk

Zn+1

or 2ut Cos (r + 0) =( >

)A where n=0,1,2.....
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or 2ut Cos (r + @) = ( .

o oo (5.8)

Where,n=1,2,3....

Zn—-1

For dark fringes path difference should be in order of A = ( > ) A
2ut Cos (r + ©) =1 /2 = {2“2‘1 )A
or 2utCos (r +60) =nd ... (5.9)

Since the focus of points of constant thickness is straight line, therefore the fringes are

straight lined in shape.

According to equation (5.8), for bright fringes

_ (@n-DA _ 1 B ]
T 4pcos(r+8)  4pcos(r+8)  4pcos(r+®) T T (-10)
If x, is the distance of fringes from the edge (position of n" fringe) then,
tan = —
Xn
_ (Zn—-1)4
or *n =73 pcos(r+8)tane 7 (5.11)
B A B 31
Thus, X1= 4pcos(r+8)tane X2 4pcos(r+B8)tang T
Fringe width @ = xn+1 — Xn
A
- ) e (5.12)

w —
4 pnCos(r+0)tan 6

If O is very small then tan ©= O, and cos (r + ©) = r. Further if we consider normal
incidence then r= 0" then cos 0 = 1 and equation (5.12) becomes

A
u}—m _______ (513)




5.4.1 Properties of Fringes Due to Wedge Shaped Film

1. As the locus of the points of constant thickness is a straight line therefore the fringes are
straight lime and parallel.

2. The fringe width w is constant for a particular wave length or colour, therefore the fringes
are of equal thickness and equidistant.

3. Fringes are localized

5.4.2. Applications of Wedge Shaped Film

By observing the interference pattern, the thickness of a spacer or wire which is placed
between two films at one end can be determined. Suppose ¢ is the thickness of a wire or
spaces and / is length of wedge shaped film as shown in figure 5.4 then we can calculate the
thickness of spacer as

t
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Figure 5.4
t
tanO = O = n
. . . . A A
If we know the fringe width ® then by using relation @ = To oI we get,
[ 2n T
Al
ZLw

Example 5.1: A white light is normally incident on a soap bobble film of thickness 0.40 pm
and refractive index 1 4. Which are the wavelengths may cause bright fringes.

Solution: For bright fringes, due to thin films, the condition is

2ut Cos r = (2n+l)% _wheren=0,123. ..

_ 4ptcosr
(2n+1)

Herer=0,u=14and t=040 pm.

or

_ 4x14x040%107% 224 x1076
(2n+1) (2n+1)

For n=0 1=224x%x10"%m
n=1; 1=0.74x10"°m
n=2; 1=044 x10"°m

I

Example 5.2: White light is incident on an oil film of thickness 0.01lmm and reflected at an
angle 45" to vertical. The refractive index of oil is 1.4 and refracted light falls on the slit of a
spectrometer, calculate the number of dark bands seen between wavelengths 4000A and
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Solution: For the dark band, formed by interference, due to thin film

2ut Cos r=nA

In case of wave length &, =4000A and p=14 , t=0.01 mm
5 2ut Cosr

n; _3.1

Now p=sf.ni=5inr=ﬁ
Sinr 1l
_ — T — __Sin?r _ B I
Cosr=VI—SiZr J - J 1— 2= 086

s n, = 2X14X0001x86 _ o

4000x 1078
Thus corresponding to ,;=4000A wavelength light we observe 60" order band

Similarly corresponding to A, wavelength

2ut Cosr 2x1.4%.001x0.86
n-, = = =
= Az 5000x1078

48

Thus corresponding to wavelength 2> =5000A light we observe 48" order band.
Thus the number of dark bands between A, and A; = n; — n, =60-48 =12.

Example 5.3: A parallel beam of light A = 5890 A is incident on a thin glass film and the
angle of refraction into the film is 60°. Calculate the smallest thickness of the film which
appear dark on reflection.

Solution: The film appears dark if the destructive interference takes place in reflection.
Path difference in dark bands
A=2nt Cos r=ni
For smallest thickness n=01 then

_ A _ 5890x1071°
ZpCosr 2x%1.5%0.5

=3927 x 1071%m = 3927 A

Example 5.4: A monochromatic light of wavelength 5890 A is incident normally on glass
plates enclosing a wedge shaped air film. The two plates touch at one end and are separated at
15cm apart from that end by a wire of 0.05 mm diameter. Calculate the fringe width of bright
fringes.

Solution: In case of wedge shaped film the fringe width 1s given by
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Figure 5.5




0.05 x10~1

Given A=5890 A, p=1,0=tan © = =33x107*

5890 x10~ 10

=——————=8924 %X 107°m = 0.89 mm
2%x1.0x3.3x10~4

Example 5.5: Sodium light of wavelength A = 5890A is incident on a wedge shaped air film.
When viewed normally 10 fringes are observed in a distance of 1cm. Calculate the angle of
the wedge.

Solution: The fringe width w for wedge shaped film is given us
2

a)-'zig
In this case, 10 fringes are observed in a distance of 1 cm. Therefore, fringe width
1
w=—=01cm
10

-8
Now o=_2 _S80XWT _, g4 % 10~*radians

180x60

=294 x 107* x %Odegree =3.94 x 107 x minute

= 1.01 minute

Example 5.6: A Wedge shaped film 1s form by using two glass plates of length 10ecm touch
at one end and separate at another end by introducing a thin foil of thickness 0.02mm. If the
sodium light of wavelength 5890A is indent normally on it. Find the separation between two
consecutive fringes.

Solution: The separation between two consecutive fringes is the same as the fringe width.

w = when&:BZtanEllzizg=2><1[]'4
2u8 x 100
Given A =5890A, 1 = 1 then
-8
wZEEQLm_‘LcmZO.Mcm
2x1%2x10

5.5 NECESSITY OF EXTENDED SOURCE FOR
INTERFERENCE DUE TO THIN FILMS

If we use narrow source of light in case of interference due to thin film the light rays are
diverged as shown in figure 5.6 (a) and we can view a limited portion of interference pattern.
On the other hand, if we use an extended or broad source of light a large number of rays are
available for the production of interference pattern as shown in figure 5.6 (b). A large number
of rays are incident on film at different angles, and a large area of film can be viewed by our

eye at the field of view. Therefore, extended source of light is beneficial to observe the good
interference pattern in thin film.
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(b)
Figure 5.6

5.6 COLOURS OF THIN FILMS

When light coming from extended source 1s reflected by thin film of o1l, mica, soap or
coating etc., different colours are shown due to interference of light. For interference, the
optical path difference i1s A = 2ut Cos r = (2n+1) //2 for bright fringes. If thickness t 1s
constant then for different wavelengths, angle of refraction r should be different. Therefore
different colours are observed at different angle of incident. Sometime different colours are
over lopped on each other’s and a mixed colour may be observed.

5.7 CLASSIFICATION OF FRINGES

As we know, in case of thin films, the path difference A is given as

2n+1
2ut Cos r = (: .

Y,

For a monochromatic light, x and 4 remain constant. Now the path difference for constructive
interference arises due to variation in thickness t and angle of incident (inclination) ». On the
basis of 7 and r the fringes are two types.

5.7.1 Fringes of Equal Thickness

If the thickness of film is varying and the light is coming at same angle of incident then
the fringes are formed due to variation in thickness. For example in case of wedge shaped
film where thickness 1s varying, the locus of points of constant thickness 1s a straight line
corresponding to which fringes are formed. Such fringes are called fringes of equal thickness.
Newton’s rings are example of such type of fringes.




5.7.2 Fringes of Equal Inclination

If the thickness of film is constant then path difference for constrictive interference is
only due to variation in angle of inclination r. In this case we consider a locus of points on
film at which the angle of inclination of light is equal. Corresponding to such points of equal
inclination we observed fringes which are called fringes of equal inclination. Since the light
rays of equal inclinations pass through the plate is a parallel beam of light, and hence meet at
infinity but by using telescope focused on such rays the fringes can be observed. In such case
fringes are called the fringes localized at infinity. Such fringes are also called Haidinger’s
fringes. The fringes formed in Michelson interferometer is an example of fringes of equal
inclination.




