Interference ...

When two light waves of some frequency, nearly same amplitude and having constant
phase difference travel and overlap on each other, there is a modification in the intensity of
light in the region of overlapping. This phenomenon is called interference.

The resultant wave depends on the phases or phase difference of waves. The
modification in intensity or change in amplitude occurs due to principle of superposition. In
certain points the two waves may be in same phase and at such point the amplitude of
resultant wave will be sum of amplitude of individual waves. Thus, if the amplitudes of
individual waves are a; and a> then the resultant amplitude will be @ = a,+ a.. In this case,
the intensity of resultant wave increases (/ « a°) and this phenomena is called constructive
interference. Corresponding to constructive interference we observe bright fringes.
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Figure 4.5

On the other hand, at certain points the two waves may be in opposite phase as shown
in figure 4.4. In these points the resultant amplitude of waves will be sum of amplitude of
individual waves with opposite directions. If the amplitudes of individual waves are a; and a;
then the resultant amplitude will be a = a;- a> and the intensity of resultant wave will be
minimum. This case is called destructive interference. Corresponding to such points we
observe dark fringes. Figure 4.5 depicts two waves of opposite phase and their resultant.

4.5.1 Theory of Superposition

Let us consider two waves represented by y; = a; sin wt and y,= a> sin (wt + J).
According to Young’s principle of superposition the resultant wave can be represented by

y=yity:
= @; sin ot + azsin(wt+9)
=@ Sin @i + a>(sin ot cos d + cos wt sin 0)

= (a;+ a> cos d) Sin wt + (a; sin d) cos wt




Let atacos6=4Acos®@ (4.2)
and asimo=Asm@ (4.3)
Where A and @ are new constants, then above equation becomes

y=A cos @ sin wt + A sin @ cos wt
or y=Asin (ot +@) (4.4)

This is the equation of the resultant wave. In this equation y represents displacement, 4
represents resultant amplitude, @ is the phase difference.

From equation (4.2) and (4.3) we can determine the constant A and @. Squaring and adding
the two equations, we get,

7 7 7 7 .
A =a +ar’ cos’ § + 2 aarcos o+ ay sim O

or A =a’ +a’ +2aayc0s6 0 ... (4.5)
On dividing equation (4.3) by eq (4.2), we obtain,

sin@ a; sin &

cosp Al = a,+aycos8 v (4.6)
4.5.2 Condition for Maxima or Bright Fringes
If cos 0 = +1 then o = 2nwr wheren=10, 1, 2, 3...... (positive integer numbers).
Then, A =a’ +a’+ 2a,a;= (a;—i—a_;f
Intensity, =4 = (@+ay . (4.7)
Therefore, for 6 = 2nz =0, 2z, 4x......, we observe bright fringes.
In term of path difference A

A= % x phase difference = % 2nm
or A=nd=120 3N . etc. . (4.8)
4.5.3 Condition for Minima or Dark Fringes
Ifcosd=—lord=02n—1)m=m,3m,57....
Then A’ =a +a’ - 2aa = (a;—a)’
Intensity, [=4"= (a- ag)‘j _______ (4.9)

Therefore if phase difference between two wavesis d = 2n—1)mr =0, 3w, Sm... etc. is the
condition of minima or dark fringes.




Now path difference, A==-x Phase difference

(2n-1)
2

A _ — _A 3154
or A=Zx(@2n-Dr= 1=222 L (4.10)

Example 4.1. Two coherent resources whose intensity ratio 1s 81:1 produce interference
fringes. Calculate the ratio of maximum intensity and minimum intensity.

Solution: If I; and I, are intensities and a; and a> are the amplitudes of two waves then

Maximum intensity = a;+a>= 9 a>+ a> = 10 a;
Minimum intensity = a;—a> = 9 ar— a> = 8 a>
The ratio of maximum intensity to minimum intensity

Lnas! Lin= (a1+as)’ / (ar-a2)” = 107/ 8% = 100/64=25/16

4.5.4 Intensity Distribution

The intensity (I) of a wave can be given as I = (12) €, a? where a is the amplitude of
wave, and € is the permittivity of free space. If we consider two waves of amplitudes a; and
a; then at the point of maxima

2 2,2
Loy = (a1+az)” = a; +ay +2a,a;

If @, = a> = a then I = 4a’. Therefore, at maxima points the resultant intensity is more than
the sum of intensities of individual waves.

Similarly the intensity at points of minima
— 2,2 _ 2
L= ay +az - 2a,a; = (a;~a;)

If a;= a>=a then 1,,;,=0. Thus the intensity at minima points is less than the intensity of any
wave.

The average intensity I, is given as

Jor1as [T (ai+a?+2a, a; Cos 8)dS  (a+al)zma
av. CEW Lo 3 =
fu dé -[n dd 2mn

=at+ a2

Ifa;=a>=athen l, = 2a° =21

Therefore, in interference pattern energy (intensity) 2a;a: is simply transferred from minima
to maxima points. The net intensity (or average intensity) remains constant or conserved.




4.6 CLASSIFICATION OF INTERFERENCE

The interference can be divided into two categories.
4.6.1 Division of Wavefront

In this class of interference, the wave front originating from a common source is
divided into two parts by employing mirror, prisms or lenses on the path. The two wave front
thus separated traverse unequal paths and are finally brought together to produce interference
pattern. Examples are biprism, Lloyd’s mirror, Laser etc.

4.6.2 Division of Amplitude

In this class of interference the amplitude or intensity of incoming beam divided into
two or more parts by partial reflection and refraction. Examples are thin films, Newton’s
rings, Michelson interferometer etc.

4.7 YOUNG’S DOUBLE SLIT EXPERIMENT

In 1801, Thomas Young performed double slit experiment in which a light first entered
through a pin holes, then again divided into two pinholes and finally brought to superimpose
on each other and obtained interferences. Young’s performed experiment with sum light.
Now the experiments are modified with monochromatic light and efficient slits.

Fig. 4.6

Figure 4.6 shows the experimental setup of double slit experiment. S; and S, are two
narrow slits illuminated by a monochromatic light source. The distance between two slits S,
and S» 1s 2d. The two waves superimposed on each other and fringes are formed on the screen
placed at a distance D from the centre of slits M. Let us consider a point P on the screen
which is y distant from O. The two rays S,P and S,P meet at point P and produce interference
pattern on screen.

Mathematically, path difference between rays S; P and S,P is given as
A= Szp —S|P

$,P% = D* + (y+d)* = D[ 1+ (y+d)* / D]




S,P = D[1+ (y+d)* / D*]"*
= D[1+2(y+d)’ /D] [(A+20)"=1+nx+- ]
or S;P=D+(y+d*2D (4.12)
Similarly
SiP? =D’ + (y-d)*
SiP =D [1+ (y-d)*/ D*]'"?
=D [1+(y-d)’/ D]
=D+(y-d*2D . (4.13)

Using equation (4.12) and (4.13), the path difference becomes

G+d? _ ) @-d® _ 2vd

A=Dick 2D 2D D

For the position of bright fringes path difference

A=nA (wheren=1,2,3........ )
Si 2 v
D
nDA
or y==:§;

Since the expression consists of integer n, i.e., y is a function of n. Thus it is better to use y, in
place of y and we can write,

_ oA
Yoo e (4.15)

Wheren= 1,2 ... etc. represents the order of fringe

- . . . D 2DA
On putting the value of n=1, n=2 etc. we get the bright fringes at positions y,= TR LEETS

etc. Similarly for the position of dark fringes, the path difference should be

A= 2n=DA
2

2yd  (Zn-1)A
or —=

D 2

_ (2n-1) DA

or YW=V e (4.16)
If we place the value of n = 1, 2, 3 ... we get the positions of dark fringes at y, = %%,
Y73 Y33 cte




Fringe Width: Distance between two consecutive bright or dark fringes is called fringe
width denoted by o (sometimes B). In case of bright fringes, fringe width
DA_ DA

B B DA
O = Ype1 = Yo = (0F]) = —n—=—

Similarly, in case of dark fringes
2(n+1)-1DA (2n—-1)-1DA DA

w= —_ f— —_— T —
Yo+l = ¥n 2 2D 2 2D 2D

4.8 COHERENCE LENGTH AND COHERENCE TIME

In case of ordinary light source, light emission takes place when an atom leaves it
excited state and come to ground state or lower energy state. The time period for the process
of transition from an upper state to lower state is about 10”* s only. Therefore an excited atom
emits light wave for only 10® s and wave remains continuously harmonic for this period.
After this period, the phase changes abruptly. But in a light source, there are innumerous
numbers of atoms which participate in the emission of light. The emission of light by a single
atom is shown in figure 4.7. After the contribution of a large number of atoms emitting light
photon, a succession of wave trains emits from the light source.

Figure 4.7
4.8.1 Coherence Length

Coherence length 1s propagation distance over which a coherent wave maintains
coherence. If the path of the interfering waves or path different is smaller than coherent
length, the interference is sustainable and we observe distinct interference pattern.

4.8.2 Coherence Time

Coherent time 7. 1s defined as the average time period during which the wave remains
sinusoidal and after which the phase change abruptly.

4.8.3 Spatial Coherence

Spatial coherence describes the correlation between waves at different points on a plane
perpendicular to the direction of propagation. More precisely, the spatial coherence is the
cross-correlation between two points in a wave for all times. If a wave has only 1 value of

amplitude over an infinite length, it is perfectly spatially coherent.
4.8.4 Temporal Coherence

Temporal coherent describes the correlation between two points in the direction of
propagation. In other words, it characterizes how well a wave can interfere with itself at a
different time as direction of propagation indicates time line. The delay over which the phase




or amplitude wanders by a significant amount (and hence the correlation decreases by
significant amount) is nothing but coherence time 7.

4.9 CONDITIONS FOR SUSTAINABLE INTERFERENCE

As we studied the different aspects of interference it is clear that under which
conditions interference can take place. But for strong interference or sustained interference
some more condition may be summarized. The conditions are:

1. The interfering waves must have same frequencies. For this purpose we can select a single
source.

2. The interfering waves must be coherent. To maintain the coherence, the path difference of
two interfering waves must be less than coherence length.

. . . . DA . . ; .

3. As fringe width is given by o = > Thus to obtain reasonable fringe width the distance
between source and screen D should be large and distance 2d between two sources should
be small.

4. For good contrast we can prefer the interfering wave of same amplitude. If amplitude of
two waves, a; and a> are same or nearly same than we observe distinct maxima and
minima.

5. The back ground of screen should be dark.

4.10 INTERFERENCE DUE TO THIN SHEET

When a thin transparent sheet of mica of thickness t and refractive index p is introduced
in the path of one of the interfering beam of light, then entire fringe system is displaced.
Suppose a thin sheet of mica of thickness t is place in the path of a light beam as shown n
figure 4.8 then suppose the fringe system is displaced by a distance x.

If ¢ is the time taken by light to travel distance §,P, then

where v is velocity of light in the thin sheet and c is the velocity of light in air.

t_SlP—t+t o c
o M HEY

¢ = 51P—Ct+|.lt

For light ray reaching to P from slit Sy, the path travelled in air is S;P-t while in thin sheet is
t, the optical path can be written as

=SP-t+ut=5P+(p-1)t
Now path difference between two interfering says S|P and S,P at P is given as

A= S,P-8,P = S,P- [S,P+ (u-1)t]




=S,P - S]P-(},bl)t
= Z%d -(p-1)t (Using equation 4.14)
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Figure 4.8
For nth maxima (bright fringe) path difference should be of the order of nA, i.e.,

%- (u-1) t= )
Taking y as y, we get, Vo= % [pA+@-1)g (4.17)

In the absence of thin sheet (1 =0)

_nDA

Yo =4

Therefore, net displacement in the presence and absence of sheet is given by equations 4.18
and 4.19 respectively

nbDA

D
x=— [nA+ (u-1) t] ===

x=2£d(}1—l)t _______ (4.19)

Therefore, on introducing a thin transparent sheet in the path of any interfering ray, the entire
fringe system will disposed by distance of x. By measuring the value of x we can calculate
the thickness of sheet.

f= x.2d
D(p-1)




