Electric field intensity and potential

part-2

Maxwell’s first law:
Statement:The following Electrostatic Field equations will be developed in this section:

Integral form Differential forms

ﬁD-du= Ipdv. VeD=p.

Surface Volume

div D= a

Maxwell’s first equation is based on Gauss” law of electrostatics published in 1832, wherein Gauss
established the relationship between static electric charges and their accompanying static fields.

The above integral equation states that the electric flux through a closed surface area is equal to the total
charge enclosed.

The differential form of the equation states that the divergence or outward flow of electric flux froma
point is equal to the volume charge density at that point.

Divergence:

The divergence represents the volume density of the outward fluxof a vector field from an infinitesimal
volume around a given point.

The following properties can all be derived from the ordinary differentiation rules of calculus. Most
importantly, the divergence is a linear operator, i.c.

div(aF + bG) = adivF + bdivG
for all vector fields F and G and all real numbers a and b.

There is a product rule ofthe following type: if ¢ is a scalar-valued function and F is a vector field, then
div(¢F) = gradg - F + ¢ divF,
or in more suggestive notation
V- (¢F) = (Vy)-F + ¢(V-F).

Another product rule for the cross product of two vector fields F and G in three dimensions involves
the curl and reads as follows:

div(F x G) = curl F- G — F - curl G,
or
V- (FxG)=(VxF)-G-F-(VxG).
The Laplacian of a scalar field is the divergence of'the field's gradient:
div(Vy) = Aep.
The divergence of the curl of any vector field (in three dimensions) is equal to zero:

V- (VxF)=0




Poisson’s and Laplace’s Equations:

For electrostatic field, we have seen that

B =NV eeeeeeeeeeeeereenn(53)
Form the above two equations we can write

VAER) =V &) =0, (58

Using vector identity we can write, E‘?VV+VVV€-—,0, ................ (55)

For a simple homogeneous medium, € is constant and V& =0 |, Therefore,

Ty =viy=-2
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This equation is known as Poisson’s equation. Here we have introduced a new operator V¥ (del
square), called the Laplacian operator. In Cartesian coordinates,
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Therefore, in Cartesian coordinates, Poisson equation can be written as:
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In cylindrical coordinates,
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In spherical polar coordinate system,
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At points in simple media, where no free charge is present, Poisson’s equation reduces to

VW =0 (61)
Which is known as Laplace’s equation.
Laplace’s and Poisson’s equation are very useful for solving many practical electrostatic field problems
where only the electrostatic conditions (potential and charge) at some boundaries are known and
solution of electric field and potential is to be found hroughout the volume. We shall consider such

applications in the section where we deal with boundary value problems.

Solutions to Laplace's Equation in CartesianCoordinates:

Having investigated some general properties of solutions to Poisson's equation, it is now appropriate to
study specific methods of solution to Laplace's equation subject to boundary conditions. Exemplified by




this and the next section are three standard steps often used in representing EQS fields. First, Laplace's
equation is set up in the coordinate system in which the boundary surfaces are coordinate surfaces. Then,

the partial differential equation is reduced to a set of ordinary differential equations by separation of
variables. In this way, an infinite set of solutions is generated. Finally, the boundary conditions are
satisfied by superimposing the solutions found by separation of variables.

In this section, solutions are derived that are natural if boundary conditions are stated along coordinate
surfaces of a Cartesian coordinate system. It is assumed that the fields depend on only two
coordinates, x and y, so that Laplace's equation is (Table I)
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This is a partial differential equation in two independent variables. One time-honored method of
mathematics is to reduce a new problem to a problem previously solved. Here the process of finding
solutions to the partial differential equation is reduced to one of finding solutions to ordinary differential
equations. This is accomplished by the method of separation of variables. 1t consists of assuming
solutions with the special space dependence

®(z,y) = X(2)Y(y) (2)

In (2), X is assumed to be a function of x alone and Y is a function of y alone. If need be, a general space
dependence is then recovered by superposition of these special solutions. Substitution of (2) into (1) and
division by flen gives

=0 (1)

1 dQX(z) 1 ciEY(y)

T ®

X(z) dz°  Y(y) dy’

Total derivative symbols are used because the respective functions X and Y are by definition only
functions of x and y.

In (3) we now have on the lefi-hand side a function of x alone, on the right-hand side a function
of y alone. The equation can be satisfied independent of x and y only if each of these expressions is
constant. We denote this "separation” constant by &7, and it follows that

i)f =—k'X (4)

and

d’Y

7 = k'Y (5)

These equations have the solutions

X ~coskz  or sin kz (6)
Y ~coshky or sinh ky (7)
If & = 0, the solutions degenerate into

X ~ constant or T 8
Y ~ constant or Yy } 95

The product solutions, (2), are summarized in the first four rows of Table 5.4.1. Those in the right-hand
column are simply those of the middle column with the roles of x and y interchanged. Generally, we will
leave the prime off the k' in writing these solutions. Exponentials are also solutions to (7). These,
sometimes more convenient, solutions are summarized in the last four rows of the table.




Electric dipole:

The name given to two point charges of equal magnitude and opposite sign, separated by a distance
which is small compared to the distance to the point P, at which we want to know the electric and

potential fields
Dipole moment:

A stronger mathematical definition is to use vector algebra, since a quantity with magnitude and

direction, like the dipole moment of two point charges, can be expressed in vector form

p=qd
Where d is the displacement vectorpointing from the negative charge to the positive charge. The electric

dipole moment vector p also points from the negative charge to the positive charge.

EFI due to an electric dipole:

To calculate electric field created by a dipole on the axial line ( on the same line joining the two charges),

. Allthe measurement ofdistancesareto be takenfromthe centre(O).
. Let the distance betweenO to +q and O to —q be ‘I’. So, total lengthbetween+q and —q will be *21".
. Takea point *p’ onthe axial line at the distance *r’ from the centre as shown in figure.
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Now, we wish to calculate electric field at point ‘P’.
By using the forrmula for electric field due to point charge,

“+ O

Electric field due to +q =
drreg (r-1F

The distance between (P and +g) = (r-)

=1 0
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Electric field due to-g =

The distance between (F and -g) = (r + 1)

(Electric field due to +q wall be positve and electic field due to- g will be negative)

Since electric field is a vector quantity so, the net electric field will be the vector addition of the twwo.
S0, the net electric field E = E; + &
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On soking the equation we get -
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Ve know that the dipole moment or effectiveness of dipole (P) is given by -

P=2ql
Therefore, putting this value in eq( 1), we get
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Certain assumptions are made based on this equation —

Since, the dipale is very small so T is also very small as compared to the distance ',

=0, on neglecting ' with respect to 1" we get -
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Note — Electric field on the axal line of dipole is not 0. ks magnitude is resultant as expressed above.

Torque:

An object with an electric dipole moment is subject to a torque t when placed in an external electric
field. The torque tends to align the dipole with the field. A dipole aligned parallel to an electric field has

lower potential energy than a dipole making some angle with it. For a spatially uniform electric field E,
the torque is given by




T=pxE,

where p is the dipole moment, and the symbol "x" refers to the vector cross product. The field vector and

the dipole vector define a plane, and the torque is directed normal to that plane with the direction given
by the right-hand rule.

A dipole oriented co- or anti-parallel to the direction in which a non-uniform electric field is increasing
(gradient of the field) will experience a torque, as well as a force in the direction of its dipole moment. It
can be shown that this force will always be parallel to the dipole moment regardless of co- or anti-
parallel orientation of the dipole.

Torque on an Electric dipole in an electric field:

Let us assume an electric dipole is placed in a uniform magnetic field as shown in figure. Each charge of
dipole experience a force gE in electric field. Since points of action of these forces are different, these equal
and anti paralel forces give rise to a couple that rotate the dipole and make the dipole to align in the direction
of field.

The torque 1 experienced by the dipole is (gE)x(2dsinB), where 2d is the length of dipole and 8 is the angle
between dipole and field direction.

T = gEx2dsing = (gx2d)xEsing = pxEsingd =p x E

we have used the definition of dipole moment p = g=2d in the above equation. p and E are vectors
representing the dipole moment and Electric field respectively.
Last step shown above is the cross product of two vectors




