Electric field intensity and potential
part-1

UNIT-1
Electrostatic Fields
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* Electric Field Intensity —Fields due to line and surface Charge Distributions

*  Work done in moving a point charge in an electrostatic field

* Electrostatic Potential & Properties of potential function — Potential gradient
+  Gauss’s law — Application of Gauss’s Law

*  Maxwell’s first law

» Divergence
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+ Behavior of conductors in an electric field — Conductors and Insulators

Introduction:

The electric charge is a fundamental property of matter and charge exist in integral multiple of
electronic charge. Electrostatics can be defined as the study of electric charges at rest. Electric fields
have their sources in electric charges.

(Note: Almost all real electric fields vary to some extent with time. However, for many problems,
the field variation is slow and the field may be considered as static. For some other cases spatial
distribution is nearly same as for the static case even though the actual field may vary with time.
Such cases are termed as quasi-static.)

In this chapter we first study two fundamental laws governing the electrostatic fields, viz, (1)
Coulomb's Law and (2) Gauss's Law. Both these law have experimental basis. Coulomb's law is
applicable in finding electric field due to any charge distribution, Gauss's law is easier to use when
the distribution is symmetrical

Coulomb's Law :

Statement:

Coulomb's Law states that the force between two point charges Qland Q2 is directly proportional to
the product of the charges and inversely proportional to the square of the distance between them.
Point charge is a hypothetical charge located at a single point in space. It is an idealized model of a

particle having an electric charge.




Mathematically,

leQz PR

F
R? 47,

Where k is the proportionality constant. And % | is called the permittivity of free space
In SI units, Q1 and Q2 are expressed in Coulombs(C) and R is in meters.

Force F is in Newton’s (N)

(We are assuming the charges are in free space. If the charges are any other dielectric medium, we

willuse £~ %% instead where % is called the relative permittivity or the dielectric constant of the

medium).
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As shown in the Figure 1 let the position vectors of the point charges Qland Q2 are given by ‘1 and
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11 Let fi2 represent the force on Q1 due to charge Q2.
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Fig 1: Coulomb's Law
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The charges are separated by a distance of 'l. We define the unit vectors as
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Similarly the force on Q) due to charge (0> can be calculated and if o represents this force then we can
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Force Due to ‘N ‘no.of point charges:

When we have a number of point charges, to determine the force on a particular charge due to all other

charges, we apply principle of superposition. If we have N number of charges 01,0:..........On located




respectively at the points represented by the position vectors i,

charge O located at 7is given by,
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Electric Field intensity:

The electric field intensity or the electric field strength at a point is defined as the force per unit charge.

That is

The electric field intensity £ at a point r (observation point) due a point charge Q located at 7' (source

point) is given by:

_Q-r)

3

e ]!

2
4?{5‘0|r-r‘

—_ — —

For a collection of N point charges 01,0s,.........0On located at .72 ¥ the electric field intensity at
point 7 'is obtained as
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The expression (6) can be modified suitably to compute the electric filed due to a continuous
distribution of charges.
In figure 2 we consider a continuous volume distribution of charge (#) in the region denoted as the

source region.

For an elementary charge d@ = p(rdv' , L.e. considering this charge as point charge, we can write the

field expression as:
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Source region

Fig 2: Continuous Volume Distribution of Charge




When this expression is integrated over the source region, we get the electric field at the point P due to

this distribution of charges. Thus the expression for the electric field at P can be written as:
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Similar technique can be adopted when the charge distribution is in the form of a line charge density or a

surface charge density.
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Electric flux density:

As stated earlier electric field intensity or simply “Electric field' gives the strength of the field at a
particular point. The electric field depends on the material media in which the field is being considered.
The flux density vector is defined to be independent of the material media (as we'll see that it relates to
the charge that is producing it).For a linear isotropic medium under consideration; the flux density

vector 1s defined as:
D=€E e (1)

We define the electric flux as

Gauss's Law:

Gauss's law is one of the fundamental laws of electromagnetism and it states that the total electric flux

through a closed surface is equal to the total charge enclosed by the surface.

Fig 3: Gauss's Law
Let us consider a point charge O located in an isotropic homogeneous medium of dielectric constant .

The flux density at a distance » on a surface enclosing the charge is given by
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If we consider an elementary area ds, the amount of flux passing through the elementary area is given by

—

dyr=Dds= 2 rdscosd
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But , is the elementary solid angle subtended by the area ds at the location of 0.
dyr= £ ds2
Therefore we can write an
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For a closed surface enclosing the charge, we can write

Which can seen to be same as what we have stated in the definition of Gauss's Law.

Application of Gauss's Law:

Gauss's law is particularly useful in computing £ or D where the charge distribution hassome
symmetry. We shall illustrate the application of Gauss's Law with some examples.
1. An infinite line charge

As the first example of illustration of use of Gauss's law, let consider the problem of determination of
the electric field produced by an infinite line charge of density (C/m. Let us consider a line charge
positioned along the z-axis as shown in Fig. 4(a) (next slide). Since the line charge is assumed to be

infinitely long, the electric field will be of the form as shown in Fig. 4(b) (next slide).
If we consider a close cylindrical surface as shown in Fig. 2.4(a), using Gauss's theorm we can write,
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Considering the fact that the unit normal vector to areas S1 and S3 are perpendicular to the electric field,

the surface integrals for the top and bottom surfaces evaluates to zero. Hence we can write,

oy = & E.and

(b)

Fig 4: Infinite Line Charge




2. Infinite Sheet of Charge

As a second example of application of Gauss's theorem, we consider an infinite charged sheet covering

the x-z plane as shown in figure 5. Assuming a surface charge density of% for the infinite surface

charge, if we consider a cylindrical volume having sideiS placed symmetrically as shown in figure 5,

we can write:

$D-ds = 2Dbs = p bs
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Fig 5: Infinite Sheet of Charge

It may be noted that the electric field strength is independent of distance. This is true for the infinite
plane of charge; electric lines of force on either side of the charge will be perpendicular to the sheet and
extend to infinity as parallel lines. As number of lines of force per unit area gives the strength of the
field, the field becomes independent of distance. For a finite charge sheet, the field will be a function of

distance.

3. Uniformly Charged Sphere
Let us consider a sphere ofradius r0 having a uniform volume charge density of rv C/m3. To determine

—

D everywhere, inside and outside the sphere, we construct Gaussian surfaces of radius r < r0 and r > r()

as shown in Fig. 6 (a) and Fig. 6(b).

For the region rin ; the total enclosed charge will be
4
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Fig 6: Uniformly Charged Sphere
By applying Gauss's theorem,
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For the region ” 2n ; the total enclosed charge will be
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By applying Gauss's theorem,

3
(i

D=?

p'l'a?' rlr&

Electrostatic Potential:

In the previous sections we have seen how the electric field intensity due to a charge or a charge
distribution can be found using Coulomb's law or Gauss's law. Since a charge placed in the vicinity of
another charge (or in other words in the field of other charge) experiences a force, the movement of the
charge represents energy exchange. Electrostatic potential is related to the work done in carrying a

charge from one point to the other in the presence of an electric field. Let us suppose that we wish to

move a positive test charge Lroma point P to another point Q as shown in the Fig. 8. The force at
any point along its path would cause the particle to accelerate and move it out of the region if

unconstrained. Since we are dealing with an electrostatic case, a force equal to the negative of that
acting on the charge is to be applied while Lmoves from P to Q. The work done by this external

agent in moving the charge by a distance &/given by:




o
Fig 8: Movement of Test Charge in Electric Field

The negative sign accounts for the fact that work is done on the system by the external agent.

g
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The potential difference between two points P and Q , VPQ, is defined as the work done per unit
charge, ie.
e
Vg = . -IE' di
e (25)

It may be noted that in moving a charge from the initial point to the final point if the potential difference
is positive, there is a gain in potential energy in the movement, external agent performs the work against
the field. If the sign of the potential difference is negative, work is done by the field.

We will see that the electrostatic system is conservative in that no net energy is exchanged if the test
charge is moved about a closed path, i.e. returning to its initial position. Further, the potential difference
between two points in an electrostatic field is a point function; it is independent of the path taken. The
potential difference is measured in Joules/Coulomb which is referred to as Volts.

Let us consider a point charge Q as shown in the Fig. 9.
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Fig 9: Electrostatic Potential calculation for a point charge




Further consider the two points A and B as shown in the Fig. 9. Considering the movement of a unit

positive test charge from B to A , we can write an expression for the potential difference as:
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It is customary to choose the potential to be zero at infinity. Thus potential at any point (rA =r) dueto a
point charge QQ can be written as the amount of work done in bringing a unit positive charge from

infinity to that point (i.e. 1B = 0).
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Fig 10: Electrostatic Potential due a Displaced Charge

The potential at a point P becomes
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A

So far we have considered the potential due to point charges only. As any other type of charge

distribution can be considered to be consisting of point charges, the same basic ideas now can be

extended to other types of charge distribution also. Let us first consider N point charges Q1, Q2 ,. QN

—_ — J—

located at points with position vectors 1,72, ... "N...The potential at a point having position vector r
can be written as:
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For continuous charge distribution, we replace point charges Qn by corresponding charge elements




Pedi or % oS or ¥ dv depending on whether the charge distribution is linear, surface or a volume

charge distribution and the summation is replaced by an integral. With these modifications we can write:
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It may be noted here that the primed coordinates represent the source coordinates and the unprimed
coordinates represent field point.
Further, in our discussion so far we have used the reference or zero potential at infinity. [fany other

point is chosen as reference, we can write:

where C is a constant. In the same manner when potential is computed from a known electric field we

can write:

The potential difference is however independent ofthe choice of reference.

Vg =Vs -V =-1_E'-di=ﬁ

Qi (36)

We have mentioned that electrostatic field is a conservative field; the work done in moving a charge
from one point to the other is independent of the path. Let us consider moving a charge from point P1 to
P2 in one path and then from point P2 back to Pl over a different path. If the work done on the two
paths were different, a net positive or negative amount of work would have been done when the body
returns to its original position P1. In a conservative field there is no mechanism for dissipating energy

corresponding to any positive work neither any source is present from which energy could be absorbed

in the case of negative work. Hence the question of different works in two paths is untenable; the work

must have to be independent of path and depends on the initial and final positions.

Since the potential difference is independent of the paths taken, VAB = - VBA , and over a closed path,

—

Via Vg = PE-di =0
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Applying Stokes's theorem, we can write:
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Any vector field that satisfies is called an irrotational field.

From our definition of potential, we can write

dV=ﬂdx+£dy+ﬁdz=—§'d?
dx dy dx
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from which we obtain,

From the foregoing discussions we observe that the electric field strength at any point is the negative of

the potential gradient at any point, negative sign shows that & directed from higher to lower values of

V" . This gives us another method of computing the electric field , i. e. if we know the potential function,
the electric field may be computed. We may note here that that one scalar functiéh contain all the
information that three components offarry, the same is possible because of the fact that three

components of £ are interrelated by the relation VxE

Equipotential Surfaces

An equipotential surface refers to a surface where the potential is constant. The intersection of an
equipotential surface with an plane surface results into a path called an equipotential line. No work is

done in moving a charge from one point to the other along an equipotential line or surface.

In figure 12, the dashes lines show the equipotential lines for a positive point charge. By symmetry, the
equipotential surfaces are spherical surfaces and the equipotential lines are circles. The solid lines show

the flux lines or electric lines of force.




Fig 12: Equipotential Lines for a Positive Point Charge
Michael Faraday as a way of visualizing electric fields introduced flux lines. It may be seen that the
electric flux lines and the equipotential lines are normal to each other. In order to plot the equipotential

cosd

. L . . 7.
lines for an electric dipole, we observe that for a given QQ and d. a constant V requires that 7 isa

constant. From this we can write ” ~ V25 (5 be the equation for an equipotential surface and a

family of surfaces can be generated for various values of cv.When plotted in 2-D this would give

equipotential lines.

To determine the equation for the electric field lines, we note that field lines represent the direction of £

in space. Therefore,
dl = kE Kisa CONStANt .....ooc.oeeereceeeeeeeseseeeeeenen (42)

G,dr +rd63, + &,y sin 8 =k(&,8, + 3,8, +4,8,) =dl “3)

For the dipole under consideration éﬁ[‘? , and therefore we can write,
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Work done in moving a point charge in an electrostatic field:

We have stated that the electric potential at a point in an electric field is the amount of work required to
bring a unit positive charge from infinity (reference of zero potential) to that point. To determine the
energy that is present in an assembly of charges, let us first determine the amount of work required to
assemble them. Let us consider a number of discrete charges Q1, Q2,. , QN are brought from infinity
to their present position one by one. Since initially there is no field present, the amount of work done in
bring Q1 is zero. Q2 is brought in the presence of the field of QI, the work done W1= Q2V21 where

V21 is the potential at the location of Q2 due to Q1. Proceeding in this manner, we can write, the total

work done W V0 * WG ) b VO o @) (45)
Had the charges been brought in the reverse order,
W=+ V@)t T (KN—QI:{-”QN-Q + V(N_Q:.NQN_:) + PEN-IWQN—]
cereeererereene(40)
Therefore,

Here V1J represent voltage at the Ith charge location due to Jth charge. Therefore,

P -1 N
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If instead of discrete charges, we now have a distribution of charges over a volume v then we can write,

where © is the volume charge density and V represents the potential function.

Since, & = VD , We can write

=1 (V- Dy

2
V@ D)y=DVV+vv: DUsing the vector identity,
, We can write

W=%V(V.(Vﬁ)-5-VV)dv

................ (51)
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In the expression = 3 , for point charges, since V varies as 7 and D varies as 7 , the term V
1 1

. e 1 . . .
D varies as 7~ while the area varies as r2. Hence the integral term varies at least as 7 and the as
surface becomes large (1.e. 7 = @ ) the integral term tends to zero.

Thus the equation for W reduces to
§ 1 == 1
s J‘(D,V Vv = 7 (DE)v=~ !‘(eE’)dv - J‘w,dv

W, =—¢€E ’ ' o .
2 , is called the energy density in the electrostatic field.
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