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1     Basic Digital Concepts 

By converting continuous analog signals into a finite number of discrete states, a process 
called digitization, then to the extent that the states are sufficiently well separated so that 
noise does create errors, the resulting digital signals allow the following (slightly idealized): 

• storage over arbitrary periods of time 

• flawless retrieval and reproduction of the stored information 

• flawless transmission of the information 

Some information is intrinsically digital, so it is natural to process and manipulate it 
using purely digital techniques. Examples are numbers and words. 

The drawback to digitization is that a single analog signal (e.g. a voltage which is a 
function of time, like a stereo signal) needs many discrete states, or bits, in order to give 
a satisfactory reproduction. For example, it requires a minimum of 10 bits to determine a 
voltage at any given time to an accuracy of ≈ 0.1%. For transmission, one now requires 10 
lines instead of the one original analog line. 

The explosion in digital techniques and technology has been made possible by the incred- 
ible increase in the density of digital circuitry, its robust performance, its relatively low cost, 
and its speed. The requirement of using many bits in reproduction is no longer an issue: 
The more the better. 

This circuitry  is based  upon the transistor,  which  can be operated as a switch  with 
two states. Hence, the digital information is intrinsically binary. So in practice, the terms 
digital and binary are used interchangeably. In the following sections we summarize some 
conventions for defining the binary states and for doing binary arithmetic. 

 
 Binary Logic States 

The following table attempts to make correspondences between conventions for defining 
binary logic states. In the case of the TTL logic gates we will be using in the lab, the Low 
voltage state is roughly 0–1 Volt and the High state is roughly 2.5–5 Volts. See page 475 of 
the text for the exact conventions for TTL as well as other hardware gate technologies. 

 

 

Boolean Logic Boolean Algebra Voltage State 
(positive true) 

Voltage State 
(negative true ) 

True (T) 1 High (H) Low (L) 
False (F) 0 L H 

 

 

The convention for naming these states is illustrated in Fig.  1.  The “positive true” case  
is illustrated. The relationship between the logic state and label (in this case “switch open”) 
at some point in the circuit can be summarized with the following: 

The labelled voltage is High (Low) when the label’s stated function is True  (False). 
In the figure, the stated function is certainly true (switch open), and this does correspond to 
a high voltage at the labelled point. (Recall that with the switch open, Ohm’s Law implies 
that with zero current, the voltage difference across the “pull up” resistor is zero, so that 
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the labelled point is at +5 Volts. With a closed switch, the labelled point is connected to 
ground, with a 5 Volt drop across the resistor and a current of I = V/R = 5 mA through 
it.) 

 

+5 V 
 
 

 

1 k 

switch open 
 

 
 

 
 

 
 

Figure 1: Illustration for labelling logic states (“positive true”). 
 

With the convention known as “negative true”, the label would be changed to “switch 
closed” with a bar over it: switch closed. Our statement becomes: 

The labelled voltage is Low (High) when the label’s stated function is True  (False). 
So in the figure, the stated function (switch closed) is true when the voltage is low. The bar 
is meant to envoke the boolean inversion operation: T̄ = F, F̄ = T, T̄ = T, and so forth. 

 

 Binary Arithmetic 

Each digit in binary is a 0 or a 1 and is called a bit, which is an abbreviation of binary digit. 
There are several common conventions for representation of numbers in binary. 

The most familiar is unsigned binary. An example of a 8-bit number in this case is 

010011112 = 0 ×  27 + 1  ×  26 + · · ·  +1 ×  20 = 6 4 + 8 + 4 + 2 + 1  = 7910 

(Generally the subscripts will be omitted, since it will be clear from the context.) To convert 
from base 10 to binary, one can use a decomposition like above, or use the following algorithm 
illustrated by 79: 79/2 = 39, remainder 1, then 39/2 = 19 r 1, and so forth. Then assemble 
all the remainders in reverse order. 

The largest number which can be represented by n bits is 2n 
bits the largest number is 11112 = 15. 

—  1. For example, with 4 

The most significant bit (MSB) is the bit representing the highest power of 2, and the 
LSB represents the lowest power of 2. 

Arithmetic with unsigned binary is analogous to decimal.  For example 1-bit addition 
and multiplication are as follows: 0 + 0 = 0, 0 + 1 = 1, 1 + 1 = 0, 0 0 = 0, 0 1 = 0, and 
1 1 = 1. Note that this is different from Boolean algebra, as we shall see shortly, where 
1 + 1  = 1. 

Another convention is called BCD (“binary coded decmal”). In this case each decimal 
digit is separately converted to binary.  Therefore,  since 7  = 01112  and 9  = 10012,  then 
79 = 01111001 (BCD). Note that this is different than our previous result. We will use 
BCD quite often in this course. It is quite convenient, for example, when decimal numerical 
displays are used. 
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Yet another convention is Gray code. You have a homework problem to practice this. 
This is less commonly used. 

 
 Representation of Negative Numbers 

There are two commonly used conventions for representing negative numbers. 
With sign magnitude, the MSB is used to flag a negative number. So for example with 4-

bit numbers we would have 0011 = 3 and 1011 = − 3. This is simple to see, but is not good 
for doing arithmetic. 

With 2’s complement, negative numbers are designed so that the sum of a number and 
its 2’s complement is zero. Using the 4-bit example again, we have 0101 = 5 and its 2’s 
complement 5 = 1011. Adding (remember to carry) gives 10000 = 0. (The 5th bit doesn’t 
count!) Both addition and multiplication work as you would expect using 2’s complement.  
There are two methods for forming the 2’s complement: 

1. Make the transformation 0 → 1 and 1 → 0, then add 1. 

2. Add some number to − 2MSB to get the number you want. For 4-bit numbers an 
example of finding the 2’s complement of 5 is − 5 = − 8 + 3 = 1000 + 0011 = 1011. 

 Hexadecimal Representation 

It is very often quite useful to represent blocks of 4 bits by a single digit. Thus in base 
16 there is a convention for using one digit for the numbers 0,1,2,.. .,15 which is called 
hexadecimal. It follows decimal for 0–9, then uses letters A–F. 

 

 

Decimal Binary Hex 
0 0000 0 
1 0001 1 
2 0010 2 
3 0011 3 
4 0100 4 
5 0101 5 
6 0110 6 
7 0111 7 
8 1000 8 
9 1001 9 

10 1010 A 
11 1011 B 
12 1100 C 
13 1101 D 
14 1110 E 
15 1111 F 
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2 Logic Gates and Combinational Logic 

 Gate Types and Truth Tables 

The basic logic gates are AND, OR, NAND, NOR, XOR, INV, and BUF. The last two are not 
standard terms; they stand for “inverter” and “buffer”, respectively. The symbols for these 
gates and their corresponding Boolean expressions are given in Table 8.2 of the text which, 
for convenience, is reproduced (in part) in Fig. 2. 

 

 

Figure 2: Table 8.2 from the text. 
 
 

All of the logical gate functions, as well as the Boolean relations discussed in the next 
section, follow from the truth tables for the AND and OR gates. We reproduce these below. 
We also show the XOR truth table, because it comes up quite often, although, as we shall see, 
it is not elemental. 
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Figure 3: AND gate. 
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Figure 4: OR gate. 
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Figure 5: XOR (exclusive OR) gate. 

A B Q 
0 0 0 
1 0 0 
0 1 0 
1 1 1 

 

A B Q 
0 0 0 
1 0 1 
0 1 1 
1 1 1 

 

A B Q 
0 0 0 
1 0 1 
0 1 1 
1 1 0 
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 Boolean Algebra and DeMorgan’s Theorems 

Boolean algebra can be used to formalize the combinations of binary logic states. The 
fundamental relations are given in Table 8.3 of the text. In these relations, A and B are 
binary quantities, that is,  they can be either logical true (T or 1) or logical false (F or 0). 
Most of these relations are obvious. Here are a few of them: 

 

AA = A ; A + A = A ; A + A = 1 ; AA = 0 ; A = A 
 

Recall that the text sometimes uses an apostrophe for inversion (AJ). We use the standard 
overbar notation (A). 

We can use algebraic expressions to complete our definitions of the basic logic gates 
we began above. Note that the Boolean operations of “multiplication” and “addition” are 
defined by the truth tables for the AND and OR gates given above in Figs. 3 and 4. Using 
these definitions, we can define all of the logic gates algebraically. The truth tables can also 
be constructed from these relations, if necessary. See Fig. 2 for the gate symbols. 

• AND: Q = AB (see Fig. 3) 

• OR: Q = A + B (see Fig. 4) 

• NAND: Q = AB 

• NOR: Q = A + B 

• XOR: Q = A ⊕  B (defined by truth table Fig. 5) 

• INV: Q = A 

• BUF: Q = A 

 Example: Combining Gates 

Let’s re-express the XOR operation in terms of standard Boolean operations. The following 
truth table evaluates the expression Q = AB + AB. 

 

A B AB AB Q 
0 0 0 0 0 
1 0 0 1 1 
0 1 1 0 1 
1 1 0 0 0 

We see that this truth table is identical to the one for the XOR operation. Therefore, we 
can write 

A ⊕ B = AB + AB (1) 

A schematic of this expression in terms of gates is given  in Fig.  6 (as well  as Fig.  8.25 of 
the text). Recall that the open circles at the output or input of a gate represent inversion. 
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⊕  
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A 

B 
Q = Q 

 

B 

 
Figure 6: Realization of the XOR gate in terms of AND and OR gates. 

 

 
 Gate Interchangeablilty 

In an example from the homework, we can make an INV gate from a 2-input NOR gate. 
Simply connect the two inputs of the NOR gate together. Algebraically, if the two original 
NOR gate inputs are labelled B and C, and they are combined to form A, then we have 
Q = B + C = A + A = A, which is the INV operation. 

Note that an INV gate can not be made from OR or AND gates. For this reason the OR and 
AND gates are not universal. So for example, no combination of AND gates can be combined 
to substitute for a NOR gate. However, the NAND and NOR gates are universal. 

 
 DeMorgan 

Perhaps the most interesting of the Boolean identities are the two known as DeMorgan’s 
Theorems: 

 

A + B = ĀB̄ (or,  A + B = ĀB̄) (2) 
 

AB = A + B (or, AB = A + B) (3) 

These expressions turn out to be quite useful, and we shall use them often. 
An example of algebraic logic manipulation follows. It is the one mentioned at the end 

of Lab 1. One is to show that an XOR gate can be composed of 4 NAND gates. From the 
section above we know A B = AB + AB. Since AA = 0 and BB = 0, we can add these, 
rearrange, and apply the two DeMorgan relations to give 

                     
     

A ⊕  B = A(A + B)+ B(A + B) = A(AB)+ B(AB) =  

 Symbolic Logic 

A(AB) B(AB) 

The two DeMorgan expressions above can be envoked using gate symbols by following this 
prescription: Change gate shape (AND↔OR) and invert all inputs and outputs. 

By examining the two rightmost columns of Fig. 2, one sees that the transformation 
between 3rd and 4th columns for the gates involving AND/OR gates works exactly in this 
way. For example, the DeMorgan expression AB = A + B is represented symbolically by the 
equivalence between the 3rd and 4th columns of the 2nd row (“NAND”) of Fig. 2. We will  
go over how this works, and some more examples, in class. 
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 Logic Minimization and Karnaugh Maps 

As we found above, given a truth table, it is always possible to write down a correct logic 
expression simply by forming an OR of the ANDs of all input variables for which the output is  
true (Q = 1). However, for an arbitrary truth table such a procedure could produce a very 
lengthy and cumbersome expression which might be needlessly inefficient to implement with 
gates. 

There are several methods for simplification of Boolean logic expressions. The process is 
usually called “logic minimization”, and the goal is to form a result which is efficient. Two  
methods we will discuss are algebraic minimization and Karnaugh maps. For very compli- 
cated problems the former method can be done using special software analysis programs. 
Karnaugh maps are also limited to problems with up to 4 binary inputs. 

Let’s start with a simple example. The table below gives an arbitrary truth table involving 
2 logic inputs. 

 

 
Table 1: Example of simple arbitrary truth table. 

 A B Q 
0 0 1 
0 1 1 
1 0 0 
1 1 1 

 
 

There are two overall stategies: 

   

1. Write down an expression directly from the truth table. Use Boolean algebra, if desired, 
to simplify. 

2. Use Karnaugh mapping (“K-map”). This is only applicable if there are ≤ 4 inputs. 

In our example above, we can use two different ways of writin down a result directly from 
the truth table. We can write down all TRUE terms and OR the result. This gives 

Q = ĀB̄ + ĀB + AB 

While correct, without further simplification this expression would involve 3 2-input AND 
gates, 2 inverters, and 1 3-input OR gate. 

Alternatively, one can write down an expression for all of the FALSE states of the truth 
table. This is simpler in this case: 

 
 

Q = AB̄ → Q = AB̄  = Ā + B 
 

where the last step results from Eqn. 3. Presumably, the two expressions can be found to 
be equivalent with some algebra. Certainly, the 2nd is simpler, and involves only an inverter 
and one 2-input OR gate. 
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Finally, one can try a K-map solution. The first step is to write out the truth table in 
the form below, with the input states the headings of rows and columns of a table, and the 
corresponding outputs within, as shown below. 

 

 
Table 2: K-map of truth table. 

 
 
 

The steps/rules are as follows: 

1. Form the 2-dimensional table as above. Combine 2 inputs in a “gray code” way – see 
2nd example below. 

2. Form groups of 1’s and circle them; the groups are rectangular and must have sides of 
length 2n ×  2m, where n and m are integers 0, 1, 2,. .  .. 

3. The groups can overlap. 

4. Write down an expression of the inputs for each group. 

5. OR together these expressions. That’s it. 

6. Groups can wrap across table edges. 

7. As before, one can alternatively form groups of 0’s to give a solution for Q. 

8. The bigger the groups one can form, the better (simpler) the result. 

9. There are usually many alternative solutions, all equivalent, some better than others 
depending upon what one is trying to optimize. 

A\B 0 1 

Here is one way of doing it: 0 1 1 
1 0 1 

The two groups we have drawn are Ā and B.  So the solution (as before) is: 

Q = Ā + B 

 
 K-map Example 2 

Let’s use this to determine which 3-bit numbers are prime. (This is a homework problem.) 
We assume that 0, 1, 2 are not prime. We will let our input number have digits a2a1a0. Here 
is the truth table: 

Here is the corresponding K-map and a solution. 
Note that where two inputs are combined in a row or column that their progression 

follows gray code, that is only one bit changes at a time. The solution shown above is: 

Q = a1a0 + a2a0 = a0(a1 + a2) 

A\B 
0 
1 

0 1 
1 1 
0 1 
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Table 3: 3-digit prime finder. 
Decimal a2 a1 a0 Q 

0 0 0 0 0 
1 0 0 1 0 
2 0 1 0 0 
3 0 1 1 1 
4 1 0 0 0 
5 1 0 1 1 
6 1 1 0 0 
7 1 1 1 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: K-map of truth table. 

 

a2\a1 a0 
0 
1 

00 01 11 10 
0 0 1 0 
0 1 1 0 
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 K-map Example 3: Full Adder 

In this example we will outline how to build a digital full adder. It is called “full” because 
it will include a “carry-in” bit and a “carry-out” bit. The carry bits will allow a succession 
of 1-bit full adders to be used to add binary numbers of arbitrary length. (A half adder 
includes only one carry bit.) 

 
 

a i 

b i 

Cin
i
 

 
Si 

Cout 
i
 

 

Figure 7: Block schematic of full adder. (We name our adder the “Σ chip”). 
 
 

The scheme for the full adder is outlined in Fig. 7. Imagine that we are adding two n-bit 
binary numbers. Let the inputs ai and bi be the i-th bits of the two numbers. The carry in 
bit Cini represents any carry from the sum of the neighboring less significant bits at position 
i −  1. That is, Cini = 1 if ai−1 = bi−1 = 1, and is 0 otherwise. The sum Si at position i is 
therefore the sum of ai, bi, and Cini. (Note that this is an arithmetic sum, not a Boolean 
OR.) A carry for this sum sets the carry out bit, Couti = 1, which then can be applied to the 
sum of the i + 1 bits. The truth table is given below. 

 

Cini ai bi Si Couti 
0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

With Cini = 0, we see that the output sum Si is just given by the XOR operation, ai ⊕ bi. 
And with Cini = 1, then Si = ai ⊕  bi.  Perhaps the simplest  way to express  this relationship 
is the following: 

Si = Cini ⊕  (ai ⊕  bi) 

To determine a relatively simple expression for Couti, we will use a K-map: 
 

Cin 
Cout 

S 

b 

a 

Cini\ai bi 
0 
1 

00 01 11 10 
0 0 1 0 
0 1 1 1 
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This yields 
Couti = aibi + Ciniai + Cinibi = aibi + Cini(ai + bi) 

which in hardware would be 2 2-input OR gates and 2 2-input AND gates. 
As stated above, the carry bits allow our adder to be expanded to add any number of 

bits. As an example, a 4-bit adder circuit is depicted in Fig. 8. The sum can be 5 bits, where 
the MSB is formed by the final carry out. (Sometimes this is referred to as an “overflow” 
bit.) 

 

S 
4 

S 
3 

S 
2 

S 
1 

S 
0
 

 

Figure 8: Expansion of 1-bit full adder to make a 4-bit adder. 
 
 

 Making a Multiplier from an Adder 

In class we will discuss how to use our full adder (the “Σ chip”) to make a multiplier. 

 
 Multiplexing 

A multiplexer (MUX) is a device which selects one of many inputs to a single output. The 
selection is done by using an input address. Hence, a MUX can take many data bits and 
put them, one at a time, on a single output data line in a particular sequence. This is an 
example of transforming parallel data to serial data.  A demultiplexer (DEMUX) performs 
the inverse operation, taking one input and sending it to one of many possible outputs. 
Again the output line is selected using an address. 

A MUX-DEMUX pair can be used to convert data to serial form for transmission, thus 
reducing the number of required transmission lines. The address bits are shared by the MUX 
and DEMUX at each end. If n data bits are to be transmitted, then after multiplexing, the 
number of separate lines required is log2 n + 1, compared to n without the conversion to 
serial. Hence for large n the saving can be substantial. In Lab 2, you will build such a 
system. 

Multiplexers consist of two functionally separate components, a decoder and some switches 
or gates. The decoder interprets the input address to select a single data bit. We use the 
example of a 4-bit MUX in the following section to illustrate how this works. 

 
2.5.1   A 4-bit MUX Design 

We wish to design a 4-bit multiplexer. The block diagram is given in Fig. 9.  There are 4 
input data bits D0–D3, 2 input address bits A0 and A1, one serial output data bit Q, and 

a 3 

b 3 

a 2 

b 2 

a 1 

b 1 

a 0 

b 0 

Cout  Cin 
S 

a b 

Cout  Cin 
S 

a b 

Cout  Cin 
S 

a b 

Cout  Cin 
S 

a b 
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E MUX 

C3 

 
DECODER 

C0 C1 C2 

 
GATES 

/SWITCHES 

an (optional) enable bit E which is used for expansion (discussed later). First we will design 
the decoder. 

 
 
 

 
D3 

D2 Q
 

D1 

D0 

 

 

A1 

A0 

 

Figure 9: Block diagram of 4-bit MUX. 
 
 

We need m address bits to specify 2m data bits. So in our example, we have 2 address 
bits. The truth table for our decoder is straightforward: 

 

A1 A0 C0 C1 C2 C3 
0 0 1 0 0 0 
0 1 0 1 0 0 
1 0 0 0 1 0 
1 1 0 0 0 1 

 

The implementation of the truth table with standard gates is also straightforward, as 
given in Fig. 10. 

 
 

C3 C2 C1 C0 

 

 
 

 

A1 

 

A0 

 

 

Figure 10: Decoder for the 4-bit MUX. 
 
 

For the “gates/switches” part of the MUX, the design depends upon whether the input 
data lines carry digital or analog signals. We will discuss the analog possibility later. The 
digital case is the usual and simplest case. Here, the data routing can be accomplished 
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simply by forming 2-input ANDs of the decoder outputs with the corresponding data input, 
and then forming an OR of these terms. Explicitly, 

 

Q = C0D0 + C1D1 + C2D2 + C3D3 
 

Finally, if an ENABLE line E is included, it is simply ANDed with the righthand side of this 
expression. This can be used to switch the entire MUX IC off/on, and is useful for expansion 
to more bits. as we shall see. 
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3 Flip-Flops and Introductory Sequential Logic 

We now turn to digital circuits which have states which change in time, usually  according 
to an external clock. The flip-flop is an important element of such circuits. It has the 
interesting property of memory: It can be set to a state which is retained until explicitly 
reset. 

 
 Simple Latches 

The following 3 figures are equivalent representations of a simple circuit. In general these 
are called flip-flops. Specifically, these examples are called SR (“set-reset”) flip-flops, or SR 
latches. 

 
 

S 
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Q 
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Figure 11: Two equivalent versions of an SR flip-flop (or “SR latch”). 
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Figure 12: Yet another equivalent SR flip-flop, as used in Lab 3. 
 
 

The truth table for the SR latch is given below. 
 

S S R R Q Q 
1 
0 
0 
1 

0 
1 
1 
0 

0 
1 
0 
1 

1 
0 
1 
0 

1 
0 

0 
1 

retains previous 
0 0 

The state described by the last row is clearly problematic, since Q and Q should not be 
the same value. Thus, the S = R = 1 inputs should be avoided. 

From the truth table, we can develop a sequence such as the following: 

S    
Q 

R 
Q 
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1. R = 0, S = 1 ⇒  Q = 1 (set) 

2. R = 0, S = 0 ⇒  Q = 1 (Q = 1 state retained: “memory”) 

3. R = 1, S = 0 ⇒  Q = 0 (reset) 

4. R = 0, S = 0 ⇒  Q = 0 (Q = 0 state retained) 

In alternative language, the first operation “writes” a true state into one bit of memory. 
It can subsequently be “read” until it is erased by the reset operation of the third line. 

 
• Latch Example: Debounced Switch 

A useful example of the simple SR flip-flop is the debounced switch, like the ones on the lab 
prototyping boards. The point is that any simple mechanical switch will bounce as it makes 
contact. Hence, an attempt to provide a simple transition from digital HIGH to LOW with a 
mechanical switch may result in an unintended series of transitions between the two states 
as the switch damps to its final position. So, for example, a digital counter connected to Q 
would count every bounce, rather than the single push of the button which was intended. 

The debounced configuration and corresponding truth table are given below. When the 
switch is moved from A to B, for example, the output Q goes LOW. A bounce would result 
in A = B = 1, which is the “retain previous” state of the flip-flop.  Hence, the bounces do 
not appear at the output Q. 

 
 

+5 V 
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+5 V 

 

Figure 13: A debounced switch. 
 
 

 
A B Q 
1 0 0 
0 1 1 
1 1 retains previous 
0 0 not allowed 
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A 

 
B 

1 k 
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 Clocked Flip-flops 

We will soon get used to the idea of a clock as an essential element of digital circuitry. 
When we speak of a clock signal, we mean a sequence of evenly spaced digital high and low 
signals proceeding at a fixed frequency. That is, the clock is a continuous sequence of square 
wave pulses. There are a number of reasons for the importance of the clock. Clearly it is 
essential for doing any kind of counting or timing operation. But, its most important role 
is in providing synchronization to the digital circuit. Each clock pulse may represent the 
transition to a new digital state of a so-called “state machine” (simple processor) we will 
soon encounter. Or a clock pulse may correspond to the movement of a bit of data from one 
location in memory to another. A digital circuit coordinates these various functions by the 
synchronization provided by a single clock signal which is shared throughout the circuit. A 
more sophisticated example of this concept is the clock of a computer, which we have come 
to associate with processing speed (e.g. 330 MHz for typical current generation commercial 
processors.) 

We can include a clock signal to our simple SR flip-flop, as shown in Fig. 14. The truth 
table, given below, follows directly from our previous SR flip-flop, except now we include a 
label for the nth clock pulse for the inputs and the output. This is because the inputs have no 
effect unless they coincide with a clock pulse. (Note that a specified clock pulse conventionally 
refers to a HIGH level.) As indicated in the truth table, the inputs Sn = Rn = 0 represent the 
flip-flop memory state. Significantly, one notes that the interval between clock pulses also 
corresponds to the “retain previous state” of the flip-flop. Hence the information encoded 
by the one bit of flip-flop memory can only be modified in synchronization with the clock. 

 
 

CLK 

 

Figure 14: A clocked SR flip-flop. 
 
 

 

Sn Rn Qn 
1 0 1 
0 1 0 
0 
1 

0 
1 

Qn−1 

avoid 
 

We are now set to make a subtle transition for our next version of the clocked flip-flop. 
The flip-flop memory is being used to retain the state between clock pulses. In fact, the 
state set up by the S and R inputs can be represented by a single input we call “data”, or 

S 

Q 

R Q 
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D. This is shown in Fig. 15. Note that we have explicitly eliminated the bad S = R =  1 
state with this configuration. 

We can override this data input and clock sychronization scheme by including the “jam 
set” (S) and “jam reset” (R) inputs shown in Fig.  15.  These  function  just  as before with 
the unclocked SR flip-flop. Note that these “jam” inputs go by various names. So sometimes 
the set is called “preset” and reset is called “clear”, for example. 

 

_ 

S 

 

D 

Q 

 
 
 
 
 

 
 

Q 

 
_ 

CLK R 

 

Figure 15: A “D-type transparent” flip-flop with jam set and reset. 
 
 

A typical timing diagram for this flip-flop is given in Fig. 16. Note that the jam reset 
signal R overrides any action of the data or clock inputs. 

 

 

CLK     

 
D 

_ 

R 

 

Q 

 
Figure 16: Example of timing diagram for the transparent D flip-flop. (It is assumed that S 
is held HIGH throughout.) 

 
 
 

• Edge Triggered Flip-Flops 

We need to make one final modification to our clocked flip-flop. Note that in the timing 
diagram of Fig.  16 that there is quite a bit of apparent ambiguity regarding exactly when 
the D input gets latched into Q. If a transition in D occurs sometime during a clock HIGH, for 
example, what will occur? The answer will depend upon the characteristics of the particular 
electronics being used. This lack of clarity is often unacceptable. As a point of terminology, 
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• ≈ 

the clocked flip-flop of Fig. 15 is called a transparent D-type flip-flop or latch. (An example 
in TTL is the 7475 IC.) 

The solution to this is the edge-triggered flip-flop. We will discuss how this works for one 
example in class. It is also discussed some in the text. Triggering on a clock rising or falling 
edge is similar in all respects to what we have discussed, except that it requires 2–3 coupled SR-
type flip-flops, rather than just one clocked SR flip-flop. The most common type is the positive-
edge triggered D-type flip-flop. This latches the D input upon the clock transition from LOW 
to HIGH. An example of this in TTL is the 7474 IC. It is also common to employ a negative-edge 
triggered D-type flip-flop, which latches the D input upon the clock transition from HIGH to 
LOW. 

The symbols used for these three D-type flip-flops are depicted in Fig. 17. Note that 
the small triangle at the clock input depicts positive-edge triggering, and with an inversion 
symbol represents negative-edge triggered. The JK type of flip-flop is a slightlier fancier 
version of the D-type which we will discuss briefly later.  Not shown in the figure are the 
jam set and reset inputs, which are typically included in the flip-flop IC packages. In timing 
diagrams, the clocks for edge-triggered devices are indicated by arrows, as shown in Fig. 18. 

 
 

 

Figure 17: Symbols for D-type and JK flip-flops. Left to right: transparent D-type, positive- 
edge triggered D-type, negative-edge triggered D-type, and positive-edge triggered JK-type. 

 
 
 
 

 

CLK CLK 

 

Figure 18: Clocks in timing diagrams for positive-edge triggered (left) and negative-edge 
triggered (right) devices. 

 
 

For edge-triggered devices, the ambiguity regarding latch timing is reduced significantly. 
But at high clock frequency it will become an issue again. Typically,  the requirements  are 
as follows: 

The data input must be held for a time tsetup before the clock edge. Typically, tsetup 
20 ns or less. 

• For some ICs, the data must be held for a short time thold after the clock edge. Typically 

thold ≈ 3 ns, but is zero for most newer ICs. 

• The output Q appears after a short propagation delay tprop of the signal through the 
gates of the IC. Typically, tprop ≈ 10 ns. 
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∼ From these considerations we see that for clocks of frequency much less than 1/(10ns) = 
100 MHz, these issues will be unimportant, and we can effectively consider the transitions 
to occur instantaneously in our timing diagrams. 
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4 Counters, Registers, and State Machines 

We can now apply what we know about basic flip-flops circuit elements to develop new 
functions: counters and registers. In doing so, we will introduce the “state machine”, a 
clocked sequential “processor”. We will examine this latter topic in more detail in a few 
weeks. 

 
 Divide by Two Counter 

The edge-triggered D-type flip-flops which we introduced in the previous Section are quite 
useful and versatile building blocks of sequential logic. A simple application is the divide-by-2 
counter shown in Fig. 19, along with the corresponding timing diagram. 

 

 
IN    

 

Q=OUT 
IN 

_    

D=Q 

 

Figure 19: Positive edge-triggered D-type flip-flop connected as divide-by-2 counter. 
 
 
 

• Using the JK Flip-flop 

In Lab 4 you will build an asynchronous (ripple) counter using a sequence of cascaded JK 
flip-flops, rather than the D-type which is used in our discussion below. For reference, the 
JK truth table is given in Fig. 20.  Note that there  is no fundamental  advantage to using 
the JK instead of the D-type, only that the JK, with the additional J = K = 1 state, makes 
the divide-by-2 function slightly simpler to implement. 

 
 

 

Figure 20: The JK Flip-flop. 
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 Asynchronous Counter 

Flip-flops can be connected in series, as shown in Fig.  21.  The resulting  outputs are given 
in Fig. 22. (Note that labels in these two figures correspond when A ≡ 20, B ≡ 21, C ≡ 22, and 
D ≡ 23. Hence, this is a 4-bit counter, with maximum count 24 −  1 = 15. It is clearly possible to 
expand such a counter to an indefinite number of bits. 

While asynchronous counters are easy to assemble, they have serious drawbacks for some 
applications. In particular, the input must propogate through the entire chain of flip-flops 
before the correct result is achieved. Eventually, at high input rate, the two ends of the chain, 
representing the LSB and MSB, can be processing different input pulses entirely.  (Perhaps 
in lab you can see this effect on the oscilloscope with a very high input frequency.) The 
solution to this is the synchronous counter, which we will discuss below as an example of a 
state machine. 

 
0 1 2 3 

2 2 2 2 
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Figure 21: Asynchronous (“ripple”) counter made from cascaded D-type flip-flops. 
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Figure 22: Waveforms generated by the ripple counter. 
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 Registers 

• Basic Register 

The figure below represents a 4-bit memory. We can think of it as 4 individual D-type flip-
flops. The important point about a data register of this type is that all of the inputs are 
latched into memory synchronously by a single clock cycle. 

 

 

 

Figure 23: 4-bit data register. 
 
 
 

• Shift Registers 

The figure below is an example of a 4-bit shift register. These configurations are quite 
useful, particularly for transforming serial data to parallel, and parallel to serial. In the 
circuit below, a pulse appearing at “serial in” would be shifted from the output of one flip- 
flop to the next on each clock cycle.  Hence a serial bit pattern at the input (4 bits long in 
this example) would appear as 4 parallel bits in the outputs Q0–Q3 after 4 clock cycles. This 
represents the serial-to-parallel case. 
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Figure 24: 4-bit shift register. 
 
 

We will discuss several examples of shift registers a few lectures hence. 
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5 Analog/Digital Conversion 

In this section we discuss the important topic of analog to digital conversion (often written 
A/D), and digital to analog conversion (D/A). On one hand, most electrical measurements 
are intrinsically analog. To take advantage of the great capabilities available for digital data 
storage, processing, and computation, on the other hand, requires the conversion of analog 
to digital. Hence, analog to digital (A/D) conversion techniques have become extremely 

important. A great deal of technical effort has gone into producing A/D converters (ADCs) 
which are fast, accurate, and cheap. D/A converters (DACs) are also very important. For 

example, video monitors convert digital information generated by computers to analog signals 
which are used to direct the electron beam at a specified portion of the monitor screen. DACs 

are conceptually simpler than ADCs, although it is diffcult in practice to build a precise DAC. 
We will discuss D/A conversion before A/D. But first we go over some underlying ideas. 

 

 A/D Resolution 

First of all we should keep in mind that there are several different schemes for encoding 
analog information as bits, depending upon what is required by a particular application. 
One extreme is that of encoding the complete analog signal in as much detail as possible. 
For example, a musical instrument produces an analog signal which is readily converted to an 
analog electrical signal using a microphone. If this is to be recorded digitally, one naturally 
would choose to digitize enough information so that when the recording is played back, the 
resulting audio is not perceived to be significantly different from the original. In this case 
the analog signal is a voltage which varies with time, V (t). 

At any time t0, V (t0) can be sampled and converted to digital. The analog signal must be 
sampled for a finite time, called the sampling time, ∆t.  One may guess that it is necessary 
to sample the analog signal continuously, with no gaps between consecutive samples. This 
turns out to be overkill. The Nyquist Theorem states that if the maximum frequency of 
inerest in the analog input is fmax, then perfect reproduction only requires that the sampling 
frequency fsamp be slightly greater than twice fmax. That is, 

fsamp > 2fmax 

For example, for audio signals the maximum frequency of interest is usually 20 kHz. In this 
case the input analog must be sampled at a little over 40 kHz. In fact, 44 kHz is typically 
used. 

Alternatively, it might not be of interest to represent the entire analog input digitally.  
Perhaps only one feature of the analog signal is useful. One example is “peak sensing,” 
where one samples and digitizes the input only at the instant where an instrument’s output 
achieves a maximum analog output. Or one may average (“integrate”) an input signal over  
some predefined time, retaining only the average value to be digitized. 

For any of these sampling schemes, there remains the issue of how many bits are to be 
used to describe the sampled signal V (t0). This is the question of A/D resolution. We need a 
standard definition of resolution. Let’s say, for example, that we choose to digitize the input 
using 12 bits. This means that we will try to match our analog input to 1 of 212 = 4096 
possible levels. This is generally done by ascribing a number from 0 to 4095. So, assuming 
our ADC works correctly, the digital estimate of the analog input can, at worst, be wrong 
by the range of the LSB. On average, the error is half of this. This defines the resolution. 
Therefore, for our 12-bit example, the resolution is 1/(2 · 4096), or a little worse than 0.01%. 
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 D/A Conversion 

The basic element of a DAC is the simplest analog divider: the resistor. First, we need to 
review the two important properties of an operational amplifier (“op-amp”) connected in 
the inverting configuration. This is shown in Fig. 25. The two important properties are 

1. The “− ” input is effectively at ground. (“virtual ground”) 

2. The voltage gain is G ≡ Vout/Vin = − R2/R1. An equivalent statement is that for a current  
at  the  − input  of  Iin  =  Vin/R1,  the  output  voltage  is  Vout  =  GVin  =  −R2I  = 
− VinR2/R1. Sometimes this is written in the form Vout = gIin, where g is the transcon- 
ductance, and g = − R2 in this case. 

 
 
 

R2 

 

 
 

VIN 
 

VOUT 

 

 

 

 
 

Figure 25: Inverting op-amp configuration. 
 
 

The basic idea of most DACs is then made clear by the 4-bit example illustrated in Fig. 
26.  The input 4-bit digital signal defines the position of the switches labelled a0–a3.   A 
HIGH input bit would correspond to a switch connected to 1.0 V, whereas a LOW connects to 
ground. The configuration in the figure represents a binary input of 1010, or 1010. Since the 
virtual ground keeps the op-amp input at ground, then for a switch connected to ground, 
there can be no current flow. However, for switches connected to 1.0 V, the current presented 
to the op-amp will be 1.0 V divided by the resistance of that leg. All legs with HIGH switches 
then contribute some current. With the binary progression of resistance values shown in the 
figure, the desired result is obtained. So for the example shown, the total current to the 
op-amp is I = 1.0/R + 1.0/(4R) = 5/(4R). The output voltage is 

Vout = − RI = 5/4 = 1.25V 

When all input bits are HIGH (1111 = 1510), we find Vout = 15/8 V. A simple check of our 
scheme shows that 

(5/4)/(15/8) = 2/3 = 10/15 = 1010/1111 

as expected. 
 

• The R-2R Ladder 

This represents a rather minor point, although it is an interesting idea. The “R-2R ladder” is 
of practical interest because it uses only two resistor values. Since it is difficult to accurately 
fabricate resistors of arbitrary resistance, this is beneficial. The two resistances of the R-2R 
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+ 



26  

R    
a 3 R 

2R 
a 2 

4R - 

a 1 

+ 
8R 

a 0 

 

 
2R 2R 

1.0V 
 

 

 

 

 
 

 

 
 

VOUT 
 

 

 

 
 
 

 

 
 

 

 

Figure 26: Example 4-bit DAC scheme. 
 

 
are to be contrasted with the scheme represented by the circuit of Fig. 26, which employs 
as many resistance values as there are bits. The idea behind the R-2R ladder hinges on 
noticing the pattern of equivalences represented by Fig. 27, which can be used to replicate 
an arbitrarily long ladder, and hence handle in arbitrary number of bits. 
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Figure 27:   Principle  of  the R-2R ladder. The rightmost 2R resistor can be indefinitely 
relicated with this equivalent circuit. 
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 A/D Conversion 

ADCs fall into 3 general types of technique: 
 

(1) parallel encoding (flash): fast; limited accuracy 

(2) successive approx. (feedback): med. fast; good accuracy 

(3) single or double slope: slow; best potential accuracy 
 
 

All of these techniques use a device known as a comparator. This was discussed in 431/531 
and in the text Chapters 4 and 9. Here, we will not discuss how comparators work, but we do 
need to know what they do. There are many makes of comparators. We will use the model 
LM311 in lab. Figure 28 shows a comparator schematically. Internally, the comparator can 
be thought of as a fast, very high-gain differential amplifier (“A”) with inputs “+” and “− .” 

We can put a “threshold voltage” at the “− ” input. Call it Vth. The circuit input Vin is 
connected to the “+” input. When Vin > Vth, the comparator amplifies this difference until 
the output reaches its largest possible value, which is determined by the connection through 
the pull-up resistor. In the configuration shown here, as well as in Lab 5, the ∼ 1 kΩ pull-up 
resistor is connected to +5 V. (Note that while +5 V is convenient for many digital circuits, 
it is possible to use other values, such as +12 V.) When Vin < Vth, the output swings the 
other way. This level is usually determined by a connection to one of the comparator pins. 
Here, it is ground. 

 
 
 

  +  R 

 
A 

   v out 

- 

 

 
 

Figure 28: Comparator. 
 
 

Hence, the comparator represents a one-bit ADC. When the analog input exceeds the pre-
defined threshold, the output goes to digital HIGH, and when the input is less that the 
threshold, the output goes to digital LOW. 

 
• Flash ADCs 

In this scheme, the input is fanned out in parallel to several comparators with monotonically 
increasing thresholds. The pattern of comparator outputs is then analyzed by some combi- 
national logic (i.e. gates) to determine the output. This technique is called flash (or parallel) 
encoding. We exemplify the flash ADC scheme with the 2-bit ADC shown in Fig. 29. With 
n = 2 bits, we need to define 2n = 4 possible states. These states represent 4 separate inter- 
vals. The analog input will fall into one of these intervals, and we will encode this assignment 
with the 2 bits.  Defining the boundaries of 2n intervals requires 2n    1 comparators, with 
the threshold of each comparator set to the appropriate boundary voltage. 
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Figure 29: Schematic of a 2-bit flash ADC. 
 

 

Let’s go through a concrete example. Assume that our FADC circuit is designed to handle 
analog voltage input signals in the range 0.5 to 3.5 V. Thus, we have a 4-volt total input 
range, with each interval spanning 1.0 V. Therefore, each state will have a maximum error, 
or resolution, of half the interval, or 0.5 V. (This is 4.0/(2 2n), as we said previously in our 
definition of resolution.) So an input which is in the range 2.5–3.5 V will give a HIGH output 
only to comparator output C2, and our digital estimation will correspond to 3.0 V. Hence, 
the threshold for the upper comparator (its “ ” input) should be set at 2.5 V. Similarly for 
the remaining comparators we work out the values which are given in the table below, where 
Vest is the digital estimate which corresponds to each state. 

 

Vin range Comparator Threshold Vest C2C1C0 Q1Q0 
2.5–3.5 V  C2 2.5 V  3.0 V  111 11 
1.5–2.5 V  C1 1.5 V  2.0 V  110 10 
0.5–1.5 V  C0 0.5 V  1.0 V  100 01 
− 0.5–0.5 V  – – 0.0 V  000 00 

Using Ohm’s and Kirchoff’s Laws, we arrive at the resistance ratios shown in Fig. 29 in 
order to achieve the desired comparator thresholds. All that remains is to determine the gate 
logic to convert the pattern of comparator outputs to a 2-bit digital output. Generalizing 
from the above, we see that we have agreement with our previous statements: For an n-bit 
ADC, we require 2n 1 comparators, and the resolution is ∆V/2n+1, where ∆V is the full 
range of analog input. 
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• Successive Approximation ADCs 

This technique is illustrated by Fig. 30, which is also the one given  for Lab 5.  It  uses a 
digital feedback loop which iterates once on successive clock cycles. The function of the 
successive approximation register, or SAR, is to make a digital estimate of the analog input 
based on the 1-bit output of the comparator. The current SAR estimate is then converted 
back to analog by the DAC and compared with the input. The cycle repeats until the “best” 
estimate is achieved. When that occurs, this present best estimate is latched into the output 
register (written into memory).  By far the most common algorithm employed by SARs is  
the binary search algorithm. This is the one used by the SAR in Lab 5, and is illustrated in 
the example in the next secion. 
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Figure 30: Scheme for 8-bit successive approximation, or feedback, ADC. 
 
 
 

• Binary Search Example 

In this example we will see the binary search algorithm in action. The binary search algorithm 
can be summarized with the following words: Go to the midpoint of the remaining non- 
excluded range. In our example, we assume an 8-bit ADC with an expected input voltage 
range of 0 to 10 V. So, naturally we choose the digital output to be 000000002 =  0 when 
the input is 0 V, and 111111112 = 255 when the input is 10 V. Hence, the LSB represents a 
voltage step ∆V = 10/255 = 39.22 mV. 

Let the input voltage be some arbitrary value, 7.09 V. Now let’s see how the algorithm 
works. Translating the words for the algorithm, written above, to what the SAR actually 
does is straightforward. The SAR always outputs one of two results, depending upon whether 
the output from the comparator was TRUE or FALSE. More precisely, the comparator will issue 
a HIGH if the current estimate is too small compared to the actual input, or a LOW if it is too 
big. The SAR then does the following: 

1. If estimate too small, add 1 to MSB− (n + 1) ; or 
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2. If estimate too big, subtract 1 from MSB− (n + 1) . 

where n is the current clock cycle (see table). 
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Figure 31: Binary search algorithm in action. The analog input is 7.09 V.  The  digital 
estimate for each clock cycle is represented by the solid line, and corresponds to the value of 
Vest in the table below. 

 
 

 
Clock Cycle, n SAR Bits SAR Bit Sum Vest (V) comp. decision 

0 01111111 127 4.98 too small 
1 10111111 127 + 64 = 191 7.49 too big 
2 
3 

10011111 
10101111 

191 −  32 = 159 
159 + 16 = 175 

6.24 
6.86 

too small 
too small 

4 10110111 175 + 8 = 183 7.18 too big 
5 
6 

10110011 
10110101 

183 −  4 = 179 
179 + 2 = 181 

7.02 
7.10 

too small 
too big 

7 10110100 181 −  1 = 180 7.06 too small 
 

The binary search algorithm is guaranteed to find the best possible estimate in a number 
of clock cycles equal to the number of bits. In the example above, the best estimate was 
actually determined on the seventh clock cycle (n = 6). But since the input value was 
between the digital estimates 180 and 181, there was no way for the ADC to determine 
which estimate was closer to the actual input value (without adding one more bit). Since 
the input can fall anywhere within 180 and 181 with equal likelihood, there should be no 
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bias introduced with this method due to systematically choosing a digital estimate which is 
too small or too big. This is the desired outcome. 

The binary-search algorithm is fast and efficient, and also has the advantage that it 
completes its estimation in a well determined number of clock cycles. Hence, the final digital 
result can always be latched after n clock cycles, where n is the number of bits.  (Many 
ADCs actually wait one additional clock cycle in order to guarantee that bits have settled, 
are latched properly, and are reset for the next input. 

 
• Single/Dual Slope ADCs 

These techniques are slower than flash or successive approximation, but in principle can be 
quite accurate. The improved accuracy is for two reasons, because time, which is robustly 
measured using digital techniques, is used as the measured quantity, and because there is 
some immunity to noise pickup, especially for the dual slope case. 

The single slope technique  is illustrated in Fig.  32, which is taken from Figure 9.54 of 
the text. The device near the input and the capacitor is an FET transistor which is used as 
a switch. When the input to the FET gate, which comes from the Q output of the D-type 
flip-flop, is LOW, then the FET is switched off, and it draws no current. However, when Q 
goes HIGH, the FET pulls the + input of the comparator to ground, and holds it there. The 
box marked “osc” represents a typical digital clock. The arrow within the circle connected to 
+Vcc is the symbol for a “current source”, which means that its output is a constant current, 
regardless of the impedance at its output (within reasonable bounds). 

 
 
 

 

Figure 32: Scheme for single-slope ADC, from text. 
 

The process begins when a rising-edge signal is sent to the flip-flop, for example from 
a debounced switch. Since the D input is HIGH, then Q goes HIGH. Hence the counter, no 
longer being held at reset by the flip-flop, begins counting. At the same time the FET is 
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− switched off and a signal is sent to the input of the comparator. Now we must analyze 
the nature of this signal. 

The voltage across a capacitor Vcap, is related to its stored charge by Vcap = Q/C, where 
C is the capacitance. Differentiating gives dVC/dt = I/C. Now, because of the current 
source, the right-hand side of this equation is a constant. Finally, since one side of the 
capacitor is at ground, then the comparator + input is just Vcap. Hence, we can integrate 
our expression over a time interval ∆t to give: 

 

V+ = Vcap = (I/C)∆t 
 

Since I/C is a known constant, this equation allows one to convert the V+ input to a time 
∆t to be measured by the counter. This linear relation between V+ (= Vcap) and ∆t is 
illustrated in the figure. The counter stops (is reset) and its final count stored in the register 
when V+ becomes equal to Vin, thus changing the state of the comparator. This also resets 
the flip-flop, thus returning the circuit to its initial state. 

The dual-slope ADCs work similarly, but with a two-step process. First, a capacitor 
is charged for a fixed time τ with a current source whose current is proportional to Vin, 
I = αVin, where α is the constant of proportionality.    Hence, Vcap is proportional to τ : 
Vcap = αVinτ/C .  The capacitor is then discharged at constant current I J and the time ∆t to 
do so is measured. Therefore, 

 

∆t = [C/I J] [ατ /C] Vin = βVin 

where β = ατ/I J is a known constant. 
This technique has two advantages compared with single-slope. First, we see from the 

equation above that the result is independent of C. This is good, as precise capacitance 
values are difficult to fabricate. Second, the integration of the input voltage in the charge-up 
step allows 60 Hz pickup noise (or other periodic noise) to be averaged to zero. 
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6 Counters, Registers, and State Machines II 

The general scheme for a state machine is given in Fig.  33.  It has n bits of memory, k 
inputs, and m outputs. It consists of a synchronous data register (lower box) which stores 
the machine’s present state. A set of separate flip-flops can be used for this, as long as they 
are clocked synchronously. The logic in the upper box acts upon the current state, plus any 
inputs, to produce the machine’s next state, as well as any outputs. Upon each pulse of the  
clock input CLK, the machine is moved from the present state to the next state. We will 
introduce this topic using counters as examples, then moving to more general applications. 
We will see, in fact, that the state machine prepresents a simple processor: The inputs can be 
generalized to be the processor program and the logic might be replaced by a random-access 
memory (RAM). 
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Figure 33: General scheme for state machine. 
 
 

The strategy for applying this scheme to a given problem consists of the following: 

1. Identify the number of required states, l. The number of bits of memory (e.g. number 
of flip-flops) required to specify the m states is at minimum n = log2(m). 

2. Make a state diagram which shows all states, inputs, and outputs. 

3. Make a truth table for the logic section. The table will have n + k inputs and n + m 
outputs. 

4. Implement the truth table using our combinational logic techniques. 
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 State Machine Introduction: Synchronous Counters 

Counters implemented as state machines are always synchronous, that is the entire circuit is 
in phase with the clock. Recall that our previous “ripple” counters were asynchronous — logic 
was initiated at different times throughout the circuit. Synchronous systems are essential 
whenever a sequential system requires more than a very modest speed or complexity. 

 
• Example: Up/down 2-bit Synchronous Counter 

A 2-bit counter requires 4 states, with each state corresponding to one of the 4 possible 2-
bit numbers. Hence, 2 bits of memory are required. We will use 2 flip-flops (D-type) to 
implement this. The state diagram is given in Fig. 34. Each circle represents one of the 
states, and the arrows represent a clock pulse which offers a transition to another state (or 
possibly to remain at the present state). The 4 states are specified by the 2 bits of memory: 
A = 00, B = 01, C = 10, D = 11. Note that we are free to label the states as we choose, 
as long as they are uniquely specified. However, in this case it is easiest to choose labels 
which correspond to our desired outputs, that is the 2-bit binary sequence 00, 01, 10, and 
11. Hence, these labels are equivalent to our desired outputs, call them Q1Q0, which are 
available at each state. (Note that the lettered labels A–D are superfluous; they could be 
omitted.) 

 
 

 

Figure 34: State diagram for 2-bit up/down synchronous counter. 
 
 

Our processor has one input bit u, which programs the up-counting (u = 1) or down- 
counting (u = 0) functions. In this case, the state machine outputs are the two bits of the 
present state, Q1Q0, so we do not reproduce them in our truth table.  The truth table for 
the logic is below. 

u=1 
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00 u=1 
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11 

u=0 u=0 

u=0 
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01 

u=0 

u=1 
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10 u=1 
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 Present State Next State 
u Q1Q0 D1D0 
1 A 00 B 01 
1 B 01 C 10 
1 C 10 D 11 
1 D 11 A 00 
0 A 00 D 11 
0 D 11 C 10 
0 C 10 B 01 
0 B 01 A 00 

 

We can now envoke the logic as usual.  We have 2 “outputs”, D0  and D1, which are to 
be evaluated separately. From the truth table, or using a K-map, we see that 

 

D1 = u ⊕ (Q0 ⊕ Q1) ; D0 = Q0 

• Example: Divide-by-Three Synchronous Counter 

Our state machine is supposed to count input pulses (input at the CLK) and set an output bit 
HIGH on every 3rd input pulse. Note that this could represent either a 2-bit (total) counter, 
or more generally the 2 least-significant bits of a many-bit counter. 

We require 3 states, therefore we need 2 bits of memory (2 D-type flip-flops, for example). 
These 2 flip-flops can describe 4 states, so we will have one “unused” state. A state diagram 
is shown in Fig. 35, with one way of labelling the states and output bit (called p) given. 

 
 
 
 
 
 

 

p=1 

 

 

 

 

 

 
Figure 35: State diagram for a divide-by-3 synchronous counter. 

 
 

The truth table for the combinational logic is below.  It is important that the “extra  
state” D = 11 be given an exit path, otherwise your processor may end up there upon 
power-up and remain stuck. (This effect has probably come to your attention with the 
“frozen” computer, which may require a reboot.) Also, note that we could have taken the  
output p from any of the states A, B, or C. 

A 

00 

D 

11 

B 

01 

C 

10 
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Present State Next State Output 
Q1Q0 D1D0 p 

A 00 B 01 0 
B 01 C 10 1 
C 10 A 00 0 
D 11 A 00 0 

 

What are the logic expressions for our 3 “outputs” of this truth table (D1, D2, and p) ? 
How would this be implemented with D-type flip-flops and logic gates? With JK flip-flops 
replacing the D-type? 
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∼ 

7 Memories and Processors 

 Memory Terminology 

We will not discuss the topic of data storage technologies per se. We are mostly interested 
here in the question of how data storage can be effectively organized. The important common 
element of the memories we will study is that they are random access memories, or RAM. 
This means that each bit of information can be individually stored or retrieved — with a 
valid input address.  This is to be contrasted with sequential memories in which bits must 
be stored or retrieved in a particular sequence, for example with data storage on magnetic 
tape. Unfortunately the term RAM has come to have a more specific meaning: A memory 
for which bits can both be easily stored or retrieved (“written to” or “read from”). Here is 
a rundown on some terms: 

• RAM. In general, refers to random access memory. All of the devices we are considering 
to be “memories” (RAM, ROM, etc.)  are random access.  The term RAM has also 
come to mean memory which can be both easily written to and read from. There are 
two main technologies used for RAM: 

1.) Static RAM. These  essentially  are arrays of flip-flops.  They can be fabricated 
in ICs as large arrays of tint flip-flops.) “SRAM” is intrisically somewhat faster than 
dynamic RAM. 

2.) Dynamic RAM. Uses capacitor arrays. Charge put on a capacitor will produce 
a HIGH bit if its voltage V = Q/C exceeds the threshold for the logic standard in use. 
Since the charge will “leak” off through the resistance of the connections in times of  
order 1 msec, the stored information must be continuously refreshed (hence the term 
“dynamic”). Dynamic RAM can be fabricated with more bits per unit area in an IC 
than static RAM. Hence, it is usually the technology of choice for most large-scale IC 
memories. 

ROM. Read-only memory. Information cannot be easily stored. The idea is that bits 
are initially defined and are never changed thereafter. As an example, it is generally 
prudent for the instructions used to initialize a computer upon initial power-up to be 
stored in ROM. The following terms refer to versions of ROM for which the stored bits 
can be over-written, but not easily. 

PROM. Programmable ROM. Bits can be set on a programming bench by burning 
“fusible links,” or equivalent. This technology is also used for programmable array 
logic (PALs), which we will briefly discuss in class. 

• EPROM. ROM which can be erased using ultraviolet light. 

• EEPROM. ROM which can be erased electronically. 

A few other points of terminology: 

• As you know, a bit is a binary digit. It represents the smallest element of information. 

• A byte is 8 bits. 

• A “K” of memory is 210 = 1024 bits (sometimes written KB). And a megabit (MB) is 
1K ×  1K bits. 

• 

• 
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× 

× 

RAM is organized into many data “words” of some prescribed length. For example, a  
RAM which has 8K = 8192 memory locations, with each location storing a data word 
of “width” 16 bits, would be referred to as a RAM of size 8K 16. The total storage 
capacity of this memory would therefore be 128KB, or simply a “128K” memory. 
(With modern very large scale integration (VLSI) technology, a typical RAM IC might 
be ∼ 16 MB. 

• Besides the memory “size,” the other important specification for memory is the access 
time. This is the time delay between when a valid request for stored data is sent to 
a memory and when the corresponding bit of data appears at the output. A typical 
access time, depending upon the technology of the memory, might be ∼ 10 ns. 

 
 Memory Configuration 

As stated above, the term “memory” refers to a particular way of organizing information — 
by random access — which is distinct from the less specific term “data storage.” Figure 36 
shows how an 8-bit RAM (8    1) is organized. (This is a very small memory, but illustrates 
the concepts.) Our RAM consists of three main components: an 8-bit multiplexer, an 8-bit 
demultiplexer, and 8 bits of storage. The storage shown consists of edge-triggered D-type 
flip-flops.   Hence, this is evidently a “static RAM.” (There is no fundamental reason for  
using edge-triggered flip-flops. They could just as easily be level-triggered, like the simple 
“clocked” S-R flip-flop of Fig. 14.) 

 

 

 

Figure 36: An 8 ×  1 bit RAM. 
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Our example RAM has 6 external connections which are inputs (data in, write enable 
(WE), 3-state enable (OE), and 3 address bits (A = a2a1a0), and has one output connection 
(data out), giving 7 external connections total, plus 2 for power/ground. To write information 
to the RAM, one would supply a valid address, for example A = 101. The data bit to be 
written to location 101 is to appear at the data input as either a logic HIGH or LOW signal. 
And to enable the writing into this bit, the WE signal must be asserted. This then appears 
at the Q5 output of the demultiplexer, and is passed on to the appropriate flip-flop, which 
stores the input data bit and passes it on to the Q5 multiplexer input. 

To read data from our RAM, one asserts an address, so that the selected bit is sent to 
the MUX output and then the 3-state buffer. The purpose of the 3-state buffer is to ensure 
that no digital outputs are directly connected together, for example if our RAM output were 
connected to a data “bus,” which in turn was connected to several other devices. Recall 
that the 3-state devices have outputs which are effectively disconnected if there is no enable 
signal. So if the output data connection of our RAM is connected to a data bus, then the OE 
signal must be coordinated with any other outputs also connected to the data bus. When it 
is OK to read data from the RAM (all other output devices are disconnected from the bus), 
the OE signal is asserted and the MUX output will appear at the RAM output. 

One could of course also store the 8 bits of data directly to an 8-bit data register, rather 
than using the RAM configuration outlined above. In this case, the number of external 
connections is 17 (8 data in, 8 data out, and 1 clock), compared with the 7 of our RAM. For 
a more realistic case where the number of bits of memory n is much larger than our example, 
we generalize the above to arrive at 4 +log2(n) external connections for the RAM, compared 
with 1 + 2n for the standalone register. Obviously for large n, the register is impractical, 
whereas the RAM remains reasonable. Actually, it is even somewhat better than this for the 
RAM case, since the number of external connections does not grow with the width of the 
stored data words. Hence, a RAM of size 1K ×  16 = 16 KB requires only 14 connections. 
This is to be compared with 32,001 connections for the register. Note that the RAM can 
only supply one bit at a time to the output. This may seem like a handicap, but is actually 
well matched to standard microprocessors. 

 
 A State Machine with Memory 

For reference, our usual state machine configuration is shown again in Fig. 37. Now we 
consider the use of a memory with a state machine, as depicted in Fig. 38. A random access 
memory is used in place of the usual combinational logic. (A ROM has been specified, to 
emphasize that we are not changing the memory — once it is defined initially, it is only read 
from. The memory is used to conveniently encode the connection between present and next 
states. 

To start with, let’s assume a state machine with  no external  inputs or outputs.  Then 
the state machine’s present state (PS) becomes an address which is input to the ROM. The 
data word stored in the ROM at that address then corresponds to the next state (NS). This 
correspondence had been initially programmed into the ROM, just as the specific combina- 
tional logic in our old state machine had to be pre-determined. So if the PS as defined by 
the Q bits at the data register are, for example, 1001, then the ROM data word at address 
1001 will be the NS which is then passed back to the register. When there are also external 
inputs, as there will be for most anything of interest, these are combined with the PS bits 
to form a longer address for the ROM. Similarly, any external outputs are combined with 
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Figure 37: The standard state machine configuration. 
 

 
the NS bits in the data word. 

This should become clear with an example. 

 
• Example: Divide by 2 or 3 Counter 

We will use a state machine with ROM, as in Fig. 38, to design a counter which either divides 
by 2 or by 3, depending upon the value of an external input bit p. This state machine will 
require 3 states, therefore we will need to describe 4 states, using 2 bits. We can label the 
states A = 00, B = 01, C = 10, and D = 11. Let p = 0 be the divide by 2 case, and p = 1 
the divide by 3. The  output bit r = 1 when  the present  state is B.  Otherwise  r = 0.  State 
D is normally unused. The truth table is below. The student should draw the corresponding 
state diagram. 

 

 

p 
Present State 
Q1Q0 

Next State 
D1D0 

 

r 

0 00 A B 01 0 
0 01 B A 00 1 
0 10 C A 00 0 
0 11 D A 00 0 
1 00 A B 01 0 
1 01 B C 10 1 
1 10 C D 11 0 
1 11 D A 00 0 

This ROM requires 3 address bits (2 for PS and 1 for input bit p), which corresponds to 
8 locations in memory. Each location has a data word which has length 3 bits (2 for NS and 
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Figure 38: Toward a microprocessor: Replacing the combinational logic with a memory. 
 

 
1 for the output bit r). Therefore, the size of this memory is 8 ×  3, or 24 total bits. A very 
small ROM indeed. The programming of the ROM is very straightforward and can be read 
directly from the truth table above. We just need to set an encoding convention. Let the 
addresses be encoded as pQ1Q0  and the data words as D1D0r.  For example,  let’s look at 
the 5th row of the truth table. The address would be 100 and the data word at this address 
would be 010. The remaining bits of the ROM would be programmed in the same way. So 
one would initially “burn in” these bit patterns into the ROM and put it into the circuit.  
That’s all there is to it. Of course if one were careful not to overwrite the memory, or if an  
evolving logical pattern were required, then a RAM could be used instead of the ROM. 

 
• Generalization to Microprocessors 

A state machine with zero input bits can perform a counter-like function, but not more: 
its next state is limited to be a function only of the present state. A single input bit can 
be used to “program” the state machine to behave in one of two possible ways for each  
present state, as we discussed, for example, with the up/down counter of Section 4.4.1, or 
the example in the preceeding section. On the other hand, with n inputs, the machine can 
perform 2n different operations. So, for example, with n = 8 the machine can perform one 
of 256 different operations on each clock cycle. This tremendous potential and flexibility. 
The input bits can themselves be sequenced — stored externally in a specific sequence which 
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is then applied step by step to the state machine inputs on successive clock cycles. Such a 
stored sequence of operations is a program and the 256 operations represent the programming 
operations. In Fig. 38 we have essentially configured a simple microprocessor. The inputs 
and outputs would need to be connected to buses (via 3-state buffers where appropriate), 
which in turn are also connected to memories which store the program and any output or 
input data. The buses would also be connected to various input/output devices, mass storage 
devices, etc. 
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