

Lecture Notes for Digital Electronics

SEM-03, CC-07 (2018-2022) AND SEM -04,
CC-10 (2022-23)

1

1 Basic Digital Concepts

By converting continuous analog signals into a finite number of discrete states, a process
called digitization, then to the extent that the states are sufficiently well separated so that
noise does create errors, the resulting digital signals allow the following (slightly idealized):

• storage over arbitrary periods of time

• flawless retrieval and reproduction of the stored information

• flawless transmission of the information

Some information is intrinsically digital, so it is natural to process and manipulate it
using purely digital techniques. Examples are numbers and words.

The drawback to digitization is that a single analog signal (e.g. a voltage which is a
function of time, like a stereo signal) needs many discrete states, or bits, in order to give
a satisfactory reproduction. For example, it requires a minimum of 10 bits to determine a
voltage at any given time to an accuracy of ≈ 0.1%. For transmission, one now requires 10
lines instead of the one original analog line.

The explosion in digital techniques and technology has been made possible by the incred-
ible increase in the density of digital circuitry, its robust performance, its relatively low cost,
and its speed. The requirement of using many bits in reproduction is no longer an issue:
The more the better.

This circuitry is based upon the transistor, which can be operated as a switch with
two states. Hence, the digital information is intrinsically binary. So in practice, the terms
digital and binary are used interchangeably. In the following sections we summarize some
conventions for defining the binary states and for doing binary arithmetic.

 Binary Logic States

The following table attempts to make correspondences between conventions for defining
binary logic states. In the case of the TTL logic gates we will be using in the lab, the Low
voltage state is roughly 0–1 Volt and the High state is roughly 2.5–5 Volts. See page 475 of
the text for the exact conventions for TTL as well as other hardware gate technologies.

Boolean Logic Boolean Algebra Voltage State
(positive true)

Voltage State
(negative true)

True (T) 1 High (H) Low (L)
False (F) 0 L H

The convention for naming these states is illustrated in Fig. 1. The “positive true” case
is illustrated. The relationship between the logic state and label (in this case “switch open”)
at some point in the circuit can be summarized with the following:

The labelled voltage is High (Low) when the label’s stated function is True (False).
In the figure, the stated function is certainly true (switch open), and this does correspond to
a high voltage at the labelled point. (Recall that with the switch open, Ohm’s Law implies
that with zero current, the voltage difference across the “pull up” resistor is zero, so that

2

×
× ×

the labelled point is at +5 Volts. With a closed switch, the labelled point is connected to
ground, with a 5 Volt drop across the resistor and a current of I = V/R = 5 mA through
it.)

+5 V

1 k

switch open

Figure 1: Illustration for labelling logic states (“positive true”).

With the convention known as “negative true”, the label would be changed to “switch
closed” with a bar over it: switch closed. Our statement becomes:

The labelled voltage is Low (High) when the label’s stated function is True (False).
So in the figure, the stated function (switch closed) is true when the voltage is low. The bar
is meant to envoke the boolean inversion operation: T̄ = F, F̄ = T, T̄ = T, and so forth.

 Binary Arithmetic

Each digit in binary is a 0 or a 1 and is called a bit, which is an abbreviation of binary digit.
There are several common conventions for representation of numbers in binary.

The most familiar is unsigned binary. An example of a 8-bit number in this case is

010011112 = 0 × 27 + 1 × 26 + · · · +1 × 20 = 6 4 + 8 + 4 + 2 + 1 = 7910

(Generally the subscripts will be omitted, since it will be clear from the context.) To convert
from base 10 to binary, one can use a decomposition like above, or use the following algorithm
illustrated by 79: 79/2 = 39, remainder 1, then 39/2 = 19 r 1, and so forth. Then assemble
all the remainders in reverse order.

The largest number which can be represented by n bits is 2n
bits the largest number is 11112 = 15.

— 1. For example, with 4

The most significant bit (MSB) is the bit representing the highest power of 2, and the
LSB represents the lowest power of 2.

Arithmetic with unsigned binary is analogous to decimal. For example 1-bit addition
and multiplication are as follows: 0 + 0 = 0, 0 + 1 = 1, 1 + 1 = 0, 0 0 = 0, 0 1 = 0, and
1 1 = 1. Note that this is different from Boolean algebra, as we shall see shortly, where
1 + 1 = 1.

Another convention is called BCD (“binary coded decmal”). In this case each decimal
digit is separately converted to binary. Therefore, since 7 = 01112 and 9 = 10012, then
79 = 01111001 (BCD). Note that this is different than our previous result. We will use
BCD quite often in this course. It is quite convenient, for example, when decimal numerical
displays are used.

3

−

Yet another convention is Gray code. You have a homework problem to practice this.
This is less commonly used.

 Representation of Negative Numbers

There are two commonly used conventions for representing negative numbers.
With sign magnitude, the MSB is used to flag a negative number. So for example with 4-

bit numbers we would have 0011 = 3 and 1011 = − 3. This is simple to see, but is not good
for doing arithmetic.

With 2’s complement, negative numbers are designed so that the sum of a number and
its 2’s complement is zero. Using the 4-bit example again, we have 0101 = 5 and its 2’s
complement 5 = 1011. Adding (remember to carry) gives 10000 = 0. (The 5th bit doesn’t
count!) Both addition and multiplication work as you would expect using 2’s complement.
There are two methods for forming the 2’s complement:

1. Make the transformation 0 → 1 and 1 → 0, then add 1.

2. Add some number to − 2MSB to get the number you want. For 4-bit numbers an
example of finding the 2’s complement of 5 is − 5 = − 8 + 3 = 1000 + 0011 = 1011.

 Hexadecimal Representation

It is very often quite useful to represent blocks of 4 bits by a single digit. Thus in base
16 there is a convention for using one digit for the numbers 0,1,2,.. .,15 which is called
hexadecimal. It follows decimal for 0–9, then uses letters A–F.

Decimal Binary Hex
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

4

2 Logic Gates and Combinational Logic

 Gate Types and Truth Tables

The basic logic gates are AND, OR, NAND, NOR, XOR, INV, and BUF. The last two are not
standard terms; they stand for “inverter” and “buffer”, respectively. The symbols for these
gates and their corresponding Boolean expressions are given in Table 8.2 of the text which,
for convenience, is reproduced (in part) in Fig. 2.

Figure 2: Table 8.2 from the text.

All of the logical gate functions, as well as the Boolean relations discussed in the next
section, follow from the truth tables for the AND and OR gates. We reproduce these below.
We also show the XOR truth table, because it comes up quite often, although, as we shall see,
it is not elemental.

5

A
Q

B

Figure 3: AND gate.

A
Q

B

Figure 4: OR gate.

A

Q
B

Figure 5: XOR (exclusive OR) gate.

A B Q
0 0 0
1 0 0
0 1 0
1 1 1

A B Q
0 0 0
1 0 1
0 1 1
1 1 1

A B Q
0 0 0
1 0 1
0 1 1
1 1 0

6

 Boolean Algebra and DeMorgan’s Theorems

Boolean algebra can be used to formalize the combinations of binary logic states. The
fundamental relations are given in Table 8.3 of the text. In these relations, A and B are
binary quantities, that is, they can be either logical true (T or 1) or logical false (F or 0).
Most of these relations are obvious. Here are a few of them:

AA = A ; A + A = A ; A + A = 1 ; AA = 0 ; A = A

Recall that the text sometimes uses an apostrophe for inversion (AJ). We use the standard
overbar notation (A).

We can use algebraic expressions to complete our definitions of the basic logic gates
we began above. Note that the Boolean operations of “multiplication” and “addition” are
defined by the truth tables for the AND and OR gates given above in Figs. 3 and 4. Using
these definitions, we can define all of the logic gates algebraically. The truth tables can also
be constructed from these relations, if necessary. See Fig. 2 for the gate symbols.

• AND: Q = AB (see Fig. 3)

• OR: Q = A + B (see Fig. 4)

• NAND: Q = AB

• NOR: Q = A + B

• XOR: Q = A ⊕ B (defined by truth table Fig. 5)

• INV: Q = A

• BUF: Q = A

 Example: Combining Gates

Let’s re-express the XOR operation in terms of standard Boolean operations. The following
truth table evaluates the expression Q = AB + AB.

A B AB AB Q
0 0 0 0 0
1 0 0 1 1
0 1 1 0 1
1 1 0 0 0

We see that this truth table is identical to the one for the XOR operation. Therefore, we
can write

A ⊕ B = AB + AB (1)

A schematic of this expression in terms of gates is given in Fig. 6 (as well as Fig. 8.25 of
the text). Recall that the open circles at the output or input of a gate represent inversion.

7

⊕

A

A

B
Q = Q

B

Figure 6: Realization of the XOR gate in terms of AND and OR gates.

 Gate Interchangeablilty

In an example from the homework, we can make an INV gate from a 2-input NOR gate.
Simply connect the two inputs of the NOR gate together. Algebraically, if the two original
NOR gate inputs are labelled B and C, and they are combined to form A, then we have
Q = B + C = A + A = A, which is the INV operation.

Note that an INV gate can not be made from OR or AND gates. For this reason the OR and
AND gates are not universal. So for example, no combination of AND gates can be combined
to substitute for a NOR gate. However, the NAND and NOR gates are universal.

 DeMorgan

Perhaps the most interesting of the Boolean identities are the two known as DeMorgan’s
Theorems:

A + B = ĀB̄ (or, A + B = ĀB̄) (2)

AB = A + B (or, AB = A + B) (3)

These expressions turn out to be quite useful, and we shall use them often.
An example of algebraic logic manipulation follows. It is the one mentioned at the end

of Lab 1. One is to show that an XOR gate can be composed of 4 NAND gates. From the
section above we know A B = AB + AB. Since AA = 0 and BB = 0, we can add these,
rearrange, and apply the two DeMorgan relations to give

A ⊕ B = A(A + B)+ B(A + B) = A(AB)+ B(AB) =

 Symbolic Logic

A(AB) B(AB)

The two DeMorgan expressions above can be envoked using gate symbols by following this
prescription: Change gate shape (AND↔OR) and invert all inputs and outputs.

By examining the two rightmost columns of Fig. 2, one sees that the transformation
between 3rd and 4th columns for the gates involving AND/OR gates works exactly in this
way. For example, the DeMorgan expression AB = A + B is represented symbolically by the
equivalence between the 3rd and 4th columns of the 2nd row (“NAND”) of Fig. 2. We will
go over how this works, and some more examples, in class.

8

 Logic Minimization and Karnaugh Maps

As we found above, given a truth table, it is always possible to write down a correct logic
expression simply by forming an OR of the ANDs of all input variables for which the output is
true (Q = 1). However, for an arbitrary truth table such a procedure could produce a very
lengthy and cumbersome expression which might be needlessly inefficient to implement with
gates.

There are several methods for simplification of Boolean logic expressions. The process is
usually called “logic minimization”, and the goal is to form a result which is efficient. Two
methods we will discuss are algebraic minimization and Karnaugh maps. For very compli-
cated problems the former method can be done using special software analysis programs.
Karnaugh maps are also limited to problems with up to 4 binary inputs.

Let’s start with a simple example. The table below gives an arbitrary truth table involving
2 logic inputs.

Table 1: Example of simple arbitrary truth table.

 A B Q
0 0 1
0 1 1
1 0 0
1 1 1

There are two overall stategies:

1. Write down an expression directly from the truth table. Use Boolean algebra, if desired,
to simplify.

2. Use Karnaugh mapping (“K-map”). This is only applicable if there are ≤ 4 inputs.

In our example above, we can use two different ways of writin down a result directly from
the truth table. We can write down all TRUE terms and OR the result. This gives

Q = ĀB̄ + ĀB + AB

While correct, without further simplification this expression would involve 3 2-input AND
gates, 2 inverters, and 1 3-input OR gate.

Alternatively, one can write down an expression for all of the FALSE states of the truth
table. This is simpler in this case:

Q = AB̄ → Q = AB̄ = Ā + B

where the last step results from Eqn. 3. Presumably, the two expressions can be found to
be equivalent with some algebra. Certainly, the 2nd is simpler, and involves only an inverter
and one 2-input OR gate.

9

Finally, one can try a K-map solution. The first step is to write out the truth table in
the form below, with the input states the headings of rows and columns of a table, and the
corresponding outputs within, as shown below.

Table 2: K-map of truth table.

The steps/rules are as follows:

1. Form the 2-dimensional table as above. Combine 2 inputs in a “gray code” way – see
2nd example below.

2. Form groups of 1’s and circle them; the groups are rectangular and must have sides of
length 2n × 2m, where n and m are integers 0, 1, 2,. . ..

3. The groups can overlap.

4. Write down an expression of the inputs for each group.

5. OR together these expressions. That’s it.

6. Groups can wrap across table edges.

7. As before, one can alternatively form groups of 0’s to give a solution for Q.

8. The bigger the groups one can form, the better (simpler) the result.

9. There are usually many alternative solutions, all equivalent, some better than others
depending upon what one is trying to optimize.

A\B 0 1

Here is one way of doing it: 0 1 1
1 0 1

The two groups we have drawn are Ā and B. So the solution (as before) is:

Q = Ā + B

 K-map Example 2

Let’s use this to determine which 3-bit numbers are prime. (This is a homework problem.)
We assume that 0, 1, 2 are not prime. We will let our input number have digits a2a1a0. Here
is the truth table:

Here is the corresponding K-map and a solution.
Note that where two inputs are combined in a row or column that their progression

follows gray code, that is only one bit changes at a time. The solution shown above is:

Q = a1a0 + a2a0 = a0(a1 + a2)

A\B
0
1

0 1
1 1
0 1

10

Table 3: 3-digit prime finder.
Decimal a2 a1 a0 Q

0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 0
5 1 0 1 1
6 1 1 0 0
7 1 1 1 1

Table 4: K-map of truth table.

a2\a1 a0
0
1

00 01 11 10
0 0 1 0
0 1 1 0

11

 K-map Example 3: Full Adder

In this example we will outline how to build a digital full adder. It is called “full” because
it will include a “carry-in” bit and a “carry-out” bit. The carry bits will allow a succession
of 1-bit full adders to be used to add binary numbers of arbitrary length. (A half adder
includes only one carry bit.)

a i

b i

Cin
i

Si

Cout
i

Figure 7: Block schematic of full adder. (We name our adder the “Σ chip”).

The scheme for the full adder is outlined in Fig. 7. Imagine that we are adding two n-bit
binary numbers. Let the inputs ai and bi be the i-th bits of the two numbers. The carry in
bit Cini represents any carry from the sum of the neighboring less significant bits at position
i − 1. That is, Cini = 1 if ai−1 = bi−1 = 1, and is 0 otherwise. The sum Si at position i is
therefore the sum of ai, bi, and Cini. (Note that this is an arithmetic sum, not a Boolean
OR.) A carry for this sum sets the carry out bit, Couti = 1, which then can be applied to the
sum of the i + 1 bits. The truth table is given below.

Cini ai bi Si Couti
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

With Cini = 0, we see that the output sum Si is just given by the XOR operation, ai ⊕ bi.
And with Cini = 1, then Si = ai ⊕ bi. Perhaps the simplest way to express this relationship
is the following:

Si = Cini ⊕ (ai ⊕ bi)

To determine a relatively simple expression for Couti, we will use a K-map:

Cin
Cout

S

b

a

Cini\ai bi
0
1

00 01 11 10
0 0 1 0
0 1 1 1

12

This yields
Couti = aibi + Ciniai + Cinibi = aibi + Cini(ai + bi)

which in hardware would be 2 2-input OR gates and 2 2-input AND gates.
As stated above, the carry bits allow our adder to be expanded to add any number of

bits. As an example, a 4-bit adder circuit is depicted in Fig. 8. The sum can be 5 bits, where
the MSB is formed by the final carry out. (Sometimes this is referred to as an “overflow”
bit.)

S
4

S
3

S
2

S
1

S
0

Figure 8: Expansion of 1-bit full adder to make a 4-bit adder.

 Making a Multiplier from an Adder

In class we will discuss how to use our full adder (the “Σ chip”) to make a multiplier.

 Multiplexing

A multiplexer (MUX) is a device which selects one of many inputs to a single output. The
selection is done by using an input address. Hence, a MUX can take many data bits and
put them, one at a time, on a single output data line in a particular sequence. This is an
example of transforming parallel data to serial data. A demultiplexer (DEMUX) performs
the inverse operation, taking one input and sending it to one of many possible outputs.
Again the output line is selected using an address.

A MUX-DEMUX pair can be used to convert data to serial form for transmission, thus
reducing the number of required transmission lines. The address bits are shared by the MUX
and DEMUX at each end. If n data bits are to be transmitted, then after multiplexing, the
number of separate lines required is log2 n + 1, compared to n without the conversion to
serial. Hence for large n the saving can be substantial. In Lab 2, you will build such a
system.

Multiplexers consist of two functionally separate components, a decoder and some switches
or gates. The decoder interprets the input address to select a single data bit. We use the
example of a 4-bit MUX in the following section to illustrate how this works.

2.5.1 A 4-bit MUX Design

We wish to design a 4-bit multiplexer. The block diagram is given in Fig. 9. There are 4
input data bits D0–D3, 2 input address bits A0 and A1, one serial output data bit Q, and

a 3

b 3

a 2

b 2

a 1

b 1

a 0

b 0

Cout Cin
S

a b

Cout Cin
S

a b

Cout Cin
S

a b

Cout Cin
S

a b

13

E MUX

C3

DECODER

C0 C1 C2

GATES

/SWITCHES

an (optional) enable bit E which is used for expansion (discussed later). First we will design
the decoder.

D3

D2 Q

D1

D0

A1

A0

Figure 9: Block diagram of 4-bit MUX.

We need m address bits to specify 2m data bits. So in our example, we have 2 address
bits. The truth table for our decoder is straightforward:

A1 A0 C0 C1 C2 C3
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

The implementation of the truth table with standard gates is also straightforward, as
given in Fig. 10.

C3 C2 C1 C0

A1

A0

Figure 10: Decoder for the 4-bit MUX.

For the “gates/switches” part of the MUX, the design depends upon whether the input
data lines carry digital or analog signals. We will discuss the analog possibility later. The
digital case is the usual and simplest case. Here, the data routing can be accomplished

14

simply by forming 2-input ANDs of the decoder outputs with the corresponding data input,
and then forming an OR of these terms. Explicitly,

Q = C0D0 + C1D1 + C2D2 + C3D3

Finally, if an ENABLE line E is included, it is simply ANDed with the righthand side of this
expression. This can be used to switch the entire MUX IC off/on, and is useful for expansion
to more bits. as we shall see.

15

3 Flip-Flops and Introductory Sequential Logic

We now turn to digital circuits which have states which change in time, usually according
to an external clock. The flip-flop is an important element of such circuits. It has the
interesting property of memory: It can be set to a state which is retained until explicitly
reset.

 Simple Latches

The following 3 figures are equivalent representations of a simple circuit. In general these
are called flip-flops. Specifically, these examples are called SR (“set-reset”) flip-flops, or SR
latches.

S
Q

Q
R

Figure 11: Two equivalent versions of an SR flip-flop (or “SR latch”).

S
Q

Q
R

Figure 12: Yet another equivalent SR flip-flop, as used in Lab 3.

The truth table for the SR latch is given below.

S S R R Q Q
1
0
0
1

0
1
1
0

0
1
0
1

1
0
1
0

1
0

0
1

retains previous
0 0

The state described by the last row is clearly problematic, since Q and Q should not be
the same value. Thus, the S = R = 1 inputs should be avoided.

From the truth table, we can develop a sequence such as the following:

S
Q

R
Q

16

1. R = 0, S = 1 ⇒ Q = 1 (set)

2. R = 0, S = 0 ⇒ Q = 1 (Q = 1 state retained: “memory”)

3. R = 1, S = 0 ⇒ Q = 0 (reset)

4. R = 0, S = 0 ⇒ Q = 0 (Q = 0 state retained)

In alternative language, the first operation “writes” a true state into one bit of memory.
It can subsequently be “read” until it is erased by the reset operation of the third line.

• Latch Example: Debounced Switch

A useful example of the simple SR flip-flop is the debounced switch, like the ones on the lab
prototyping boards. The point is that any simple mechanical switch will bounce as it makes
contact. Hence, an attempt to provide a simple transition from digital HIGH to LOW with a
mechanical switch may result in an unintended series of transitions between the two states
as the switch damps to its final position. So, for example, a digital counter connected to Q
would count every bounce, rather than the single push of the button which was intended.

The debounced configuration and corresponding truth table are given below. When the
switch is moved from A to B, for example, the output Q goes LOW. A bounce would result
in A = B = 1, which is the “retain previous” state of the flip-flop. Hence, the bounces do
not appear at the output Q.

+5 V

Q

+5 V

Figure 13: A debounced switch.

A B Q
1 0 0
0 1 1
1 1 retains previous
0 0 not allowed

1 k

A

B

1 k

17

 Clocked Flip-flops

We will soon get used to the idea of a clock as an essential element of digital circuitry.
When we speak of a clock signal, we mean a sequence of evenly spaced digital high and low
signals proceeding at a fixed frequency. That is, the clock is a continuous sequence of square
wave pulses. There are a number of reasons for the importance of the clock. Clearly it is
essential for doing any kind of counting or timing operation. But, its most important role
is in providing synchronization to the digital circuit. Each clock pulse may represent the
transition to a new digital state of a so-called “state machine” (simple processor) we will
soon encounter. Or a clock pulse may correspond to the movement of a bit of data from one
location in memory to another. A digital circuit coordinates these various functions by the
synchronization provided by a single clock signal which is shared throughout the circuit. A
more sophisticated example of this concept is the clock of a computer, which we have come
to associate with processing speed (e.g. 330 MHz for typical current generation commercial
processors.)

We can include a clock signal to our simple SR flip-flop, as shown in Fig. 14. The truth
table, given below, follows directly from our previous SR flip-flop, except now we include a
label for the nth clock pulse for the inputs and the output. This is because the inputs have no
effect unless they coincide with a clock pulse. (Note that a specified clock pulse conventionally
refers to a HIGH level.) As indicated in the truth table, the inputs Sn = Rn = 0 represent the
flip-flop memory state. Significantly, one notes that the interval between clock pulses also
corresponds to the “retain previous state” of the flip-flop. Hence the information encoded
by the one bit of flip-flop memory can only be modified in synchronization with the clock.

CLK

Figure 14: A clocked SR flip-flop.

Sn Rn Qn
1 0 1
0 1 0
0
1

0
1

Qn−1

avoid

We are now set to make a subtle transition for our next version of the clocked flip-flop.
The flip-flop memory is being used to retain the state between clock pulses. In fact, the
state set up by the S and R inputs can be represented by a single input we call “data”, or

S

Q

R Q

18

D. This is shown in Fig. 15. Note that we have explicitly eliminated the bad S = R = 1
state with this configuration.

We can override this data input and clock sychronization scheme by including the “jam
set” (S) and “jam reset” (R) inputs shown in Fig. 15. These function just as before with
the unclocked SR flip-flop. Note that these “jam” inputs go by various names. So sometimes
the set is called “preset” and reset is called “clear”, for example.

_

S

D

Q

Q

_

CLK R

Figure 15: A “D-type transparent” flip-flop with jam set and reset.

A typical timing diagram for this flip-flop is given in Fig. 16. Note that the jam reset
signal R overrides any action of the data or clock inputs.

CLK

D

_

R

Q

Figure 16: Example of timing diagram for the transparent D flip-flop. (It is assumed that S
is held HIGH throughout.)

• Edge Triggered Flip-Flops

We need to make one final modification to our clocked flip-flop. Note that in the timing
diagram of Fig. 16 that there is quite a bit of apparent ambiguity regarding exactly when
the D input gets latched into Q. If a transition in D occurs sometime during a clock HIGH, for
example, what will occur? The answer will depend upon the characteristics of the particular
electronics being used. This lack of clarity is often unacceptable. As a point of terminology,

19

• ≈

the clocked flip-flop of Fig. 15 is called a transparent D-type flip-flop or latch. (An example
in TTL is the 7475 IC.)

The solution to this is the edge-triggered flip-flop. We will discuss how this works for one
example in class. It is also discussed some in the text. Triggering on a clock rising or falling
edge is similar in all respects to what we have discussed, except that it requires 2–3 coupled SR-
type flip-flops, rather than just one clocked SR flip-flop. The most common type is the positive-
edge triggered D-type flip-flop. This latches the D input upon the clock transition from LOW
to HIGH. An example of this in TTL is the 7474 IC. It is also common to employ a negative-edge
triggered D-type flip-flop, which latches the D input upon the clock transition from HIGH to
LOW.

The symbols used for these three D-type flip-flops are depicted in Fig. 17. Note that
the small triangle at the clock input depicts positive-edge triggering, and with an inversion
symbol represents negative-edge triggered. The JK type of flip-flop is a slightlier fancier
version of the D-type which we will discuss briefly later. Not shown in the figure are the
jam set and reset inputs, which are typically included in the flip-flop IC packages. In timing
diagrams, the clocks for edge-triggered devices are indicated by arrows, as shown in Fig. 18.

Figure 17: Symbols for D-type and JK flip-flops. Left to right: transparent D-type, positive-
edge triggered D-type, negative-edge triggered D-type, and positive-edge triggered JK-type.

CLK CLK

Figure 18: Clocks in timing diagrams for positive-edge triggered (left) and negative-edge
triggered (right) devices.

For edge-triggered devices, the ambiguity regarding latch timing is reduced significantly.
But at high clock frequency it will become an issue again. Typically, the requirements are
as follows:

The data input must be held for a time tsetup before the clock edge. Typically, tsetup
20 ns or less.

• For some ICs, the data must be held for a short time thold after the clock edge. Typically

thold ≈ 3 ns, but is zero for most newer ICs.

• The output Q appears after a short propagation delay tprop of the signal through the
gates of the IC. Typically, tprop ≈ 10 ns.

CLK

Q D

CLK

Q D

CLK

Q D

K

Q
CLK

J

20

∼ From these considerations we see that for clocks of frequency much less than 1/(10ns) =
100 MHz, these issues will be unimportant, and we can effectively consider the transitions
to occur instantaneously in our timing diagrams.

21

4 Counters, Registers, and State Machines

We can now apply what we know about basic flip-flops circuit elements to develop new
functions: counters and registers. In doing so, we will introduce the “state machine”, a
clocked sequential “processor”. We will examine this latter topic in more detail in a few
weeks.

 Divide by Two Counter

The edge-triggered D-type flip-flops which we introduced in the previous Section are quite
useful and versatile building blocks of sequential logic. A simple application is the divide-by-2
counter shown in Fig. 19, along with the corresponding timing diagram.

IN

Q=OUT
IN

_

D=Q

Figure 19: Positive edge-triggered D-type flip-flop connected as divide-by-2 counter.

• Using the JK Flip-flop

In Lab 4 you will build an asynchronous (ripple) counter using a sequence of cascaded JK
flip-flops, rather than the D-type which is used in our discussion below. For reference, the
JK truth table is given in Fig. 20. Note that there is no fundamental advantage to using
the JK instead of the D-type, only that the JK, with the additional J = K = 1 state, makes
the divide-by-2 function slightly simpler to implement.

Figure 20: The JK Flip-flop.

OUT

D Q

CLK _

Q

Jn Kn Qn
1 0 1
0 1 0
0 0 Qn−1

1 1 Qn−1

K

Q
CLK

J

22

 Asynchronous Counter

Flip-flops can be connected in series, as shown in Fig. 21. The resulting outputs are given
in Fig. 22. (Note that labels in these two figures correspond when A ≡ 20, B ≡ 21, C ≡ 22, and
D ≡ 23. Hence, this is a 4-bit counter, with maximum count 24 − 1 = 15. It is clearly possible to
expand such a counter to an indefinite number of bits.

While asynchronous counters are easy to assemble, they have serious drawbacks for some
applications. In particular, the input must propogate through the entire chain of flip-flops
before the correct result is achieved. Eventually, at high input rate, the two ends of the chain,
representing the LSB and MSB, can be processing different input pulses entirely. (Perhaps
in lab you can see this effect on the oscilloscope with a very high input frequency.) The
solution to this is the synchronous counter, which we will discuss below as an example of a
state machine.

0 1 2 3

2 2 2 2

IN

Figure 21: Asynchronous (“ripple”) counter made from cascaded D-type flip-flops.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IN

A

B

C

D

Figure 22: Waveforms generated by the ripple counter.

D Q D Q D Q D Q

CLK _ CLK _ CLK _ CLK _

Q Q Q Q

23

 Registers

• Basic Register

The figure below represents a 4-bit memory. We can think of it as 4 individual D-type flip-
flops. The important point about a data register of this type is that all of the inputs are
latched into memory synchronously by a single clock cycle.

Figure 23: 4-bit data register.

• Shift Registers

The figure below is an example of a 4-bit shift register. These configurations are quite
useful, particularly for transforming serial data to parallel, and parallel to serial. In the
circuit below, a pulse appearing at “serial in” would be shifted from the output of one flip-
flop to the next on each clock cycle. Hence a serial bit pattern at the input (4 bits long in
this example) would appear as 4 parallel bits in the outputs Q0–Q3 after 4 clock cycles. This
represents the serial-to-parallel case.

Q0 Q1 Q2 Q3

C

Figure 24: 4-bit shift register.

We will discuss several examples of shift registers a few lectures hence.

SERIAL

IN

LK

CLK

Q D

CLK

Q D

CLK

Q D

CLK

Q D

Q0
CLK

D0

Q2

Q1

D2

D1

Q3 D3

24

5 Analog/Digital Conversion

In this section we discuss the important topic of analog to digital conversion (often written
A/D), and digital to analog conversion (D/A). On one hand, most electrical measurements
are intrinsically analog. To take advantage of the great capabilities available for digital data
storage, processing, and computation, on the other hand, requires the conversion of analog
to digital. Hence, analog to digital (A/D) conversion techniques have become extremely

important. A great deal of technical effort has gone into producing A/D converters (ADCs)
which are fast, accurate, and cheap. D/A converters (DACs) are also very important. For

example, video monitors convert digital information generated by computers to analog signals
which are used to direct the electron beam at a specified portion of the monitor screen. DACs

are conceptually simpler than ADCs, although it is diffcult in practice to build a precise DAC.
We will discuss D/A conversion before A/D. But first we go over some underlying ideas.

 A/D Resolution

First of all we should keep in mind that there are several different schemes for encoding
analog information as bits, depending upon what is required by a particular application.
One extreme is that of encoding the complete analog signal in as much detail as possible.
For example, a musical instrument produces an analog signal which is readily converted to an
analog electrical signal using a microphone. If this is to be recorded digitally, one naturally
would choose to digitize enough information so that when the recording is played back, the
resulting audio is not perceived to be significantly different from the original. In this case
the analog signal is a voltage which varies with time, V (t).

At any time t0, V (t0) can be sampled and converted to digital. The analog signal must be
sampled for a finite time, called the sampling time, ∆t. One may guess that it is necessary
to sample the analog signal continuously, with no gaps between consecutive samples. This
turns out to be overkill. The Nyquist Theorem states that if the maximum frequency of
inerest in the analog input is fmax, then perfect reproduction only requires that the sampling
frequency fsamp be slightly greater than twice fmax. That is,

fsamp > 2fmax

For example, for audio signals the maximum frequency of interest is usually 20 kHz. In this
case the input analog must be sampled at a little over 40 kHz. In fact, 44 kHz is typically
used.

Alternatively, it might not be of interest to represent the entire analog input digitally.
Perhaps only one feature of the analog signal is useful. One example is “peak sensing,”
where one samples and digitizes the input only at the instant where an instrument’s output
achieves a maximum analog output. Or one may average (“integrate”) an input signal over
some predefined time, retaining only the average value to be digitized.

For any of these sampling schemes, there remains the issue of how many bits are to be
used to describe the sampled signal V (t0). This is the question of A/D resolution. We need a
standard definition of resolution. Let’s say, for example, that we choose to digitize the input
using 12 bits. This means that we will try to match our analog input to 1 of 212 = 4096
possible levels. This is generally done by ascribing a number from 0 to 4095. So, assuming
our ADC works correctly, the digital estimate of the analog input can, at worst, be wrong
by the range of the LSB. On average, the error is half of this. This defines the resolution.
Therefore, for our 12-bit example, the resolution is 1/(2 · 4096), or a little worse than 0.01%.

25

 D/A Conversion

The basic element of a DAC is the simplest analog divider: the resistor. First, we need to
review the two important properties of an operational amplifier (“op-amp”) connected in
the inverting configuration. This is shown in Fig. 25. The two important properties are

1. The “− ” input is effectively at ground. (“virtual ground”)

2. The voltage gain is G ≡ Vout/Vin = − R2/R1. An equivalent statement is that for a current
at the − input of Iin = Vin/R1, the output voltage is Vout = GVin = −R2I =
− VinR2/R1. Sometimes this is written in the form Vout = gIin, where g is the transcon-
ductance, and g = − R2 in this case.

R2

VIN

VOUT

Figure 25: Inverting op-amp configuration.

The basic idea of most DACs is then made clear by the 4-bit example illustrated in Fig.
26. The input 4-bit digital signal defines the position of the switches labelled a0–a3. A
HIGH input bit would correspond to a switch connected to 1.0 V, whereas a LOW connects to
ground. The configuration in the figure represents a binary input of 1010, or 1010. Since the
virtual ground keeps the op-amp input at ground, then for a switch connected to ground,
there can be no current flow. However, for switches connected to 1.0 V, the current presented
to the op-amp will be 1.0 V divided by the resistance of that leg. All legs with HIGH switches
then contribute some current. With the binary progression of resistance values shown in the
figure, the desired result is obtained. So for the example shown, the total current to the
op-amp is I = 1.0/R + 1.0/(4R) = 5/(4R). The output voltage is

Vout = − RI = 5/4 = 1.25V

When all input bits are HIGH (1111 = 1510), we find Vout = 15/8 V. A simple check of our
scheme shows that

(5/4)/(15/8) = 2/3 = 10/15 = 1010/1111

as expected.

• The R-2R Ladder

This represents a rather minor point, although it is an interesting idea. The “R-2R ladder” is
of practical interest because it uses only two resistor values. Since it is difficult to accurately
fabricate resistors of arbitrary resistance, this is beneficial. The two resistances of the R-2R

R1

-

+

26

R
a 3 R

2R
a 2

4R -

a 1

+
8R

a 0

2R 2R

1.0V

VOUT

Figure 26: Example 4-bit DAC scheme.

are to be contrasted with the scheme represented by the circuit of Fig. 26, which employs
as many resistance values as there are bits. The idea behind the R-2R ladder hinges on
noticing the pattern of equivalences represented by Fig. 27, which can be used to replicate
an arbitrarily long ladder, and hence handle in arbitrary number of bits.

V V
R

V/2

R

V V/2

= R = 2R etc.

Figure 27: Principle of the R-2R ladder. The rightmost 2R resistor can be indefinitely
relicated with this equivalent circuit.

27

−

 A/D Conversion

ADCs fall into 3 general types of technique:

(1) parallel encoding (flash): fast; limited accuracy

(2) successive approx. (feedback): med. fast; good accuracy

(3) single or double slope: slow; best potential accuracy

All of these techniques use a device known as a comparator. This was discussed in 431/531
and in the text Chapters 4 and 9. Here, we will not discuss how comparators work, but we do
need to know what they do. There are many makes of comparators. We will use the model
LM311 in lab. Figure 28 shows a comparator schematically. Internally, the comparator can
be thought of as a fast, very high-gain differential amplifier (“A”) with inputs “+” and “− .”

We can put a “threshold voltage” at the “− ” input. Call it Vth. The circuit input Vin is
connected to the “+” input. When Vin > Vth, the comparator amplifies this difference until
the output reaches its largest possible value, which is determined by the connection through
the pull-up resistor. In the configuration shown here, as well as in Lab 5, the ∼ 1 kΩ pull-up
resistor is connected to +5 V. (Note that while +5 V is convenient for many digital circuits,
it is possible to use other values, such as +12 V.) When Vin < Vth, the output swings the
other way. This level is usually determined by a connection to one of the comparator pins.
Here, it is ground.

 + R

A

 v out

-

Figure 28: Comparator.

Hence, the comparator represents a one-bit ADC. When the analog input exceeds the pre-
defined threshold, the output goes to digital HIGH, and when the input is less that the
threshold, the output goes to digital LOW.

• Flash ADCs

In this scheme, the input is fanned out in parallel to several comparators with monotonically
increasing thresholds. The pattern of comparator outputs is then analyzed by some combi-
national logic (i.e. gates) to determine the output. This technique is called flash (or parallel)
encoding. We exemplify the flash ADC scheme with the 2-bit ADC shown in Fig. 29. With
n = 2 bits, we need to define 2n = 4 possible states. These states represent 4 separate inter-
vals. The analog input will fall into one of these intervals, and we will encode this assignment
with the 2 bits. Defining the boundaries of 2n intervals requires 2n 1 comparators, with
the threshold of each comparator set to the appropriate boundary voltage.

28

−

·

−

−

Vo

Vin

Q 1

Q 0

Figure 29: Schematic of a 2-bit flash ADC.

Let’s go through a concrete example. Assume that our FADC circuit is designed to handle
analog voltage input signals in the range 0.5 to 3.5 V. Thus, we have a 4-volt total input
range, with each interval spanning 1.0 V. Therefore, each state will have a maximum error,
or resolution, of half the interval, or 0.5 V. (This is 4.0/(2 2n), as we said previously in our
definition of resolution.) So an input which is in the range 2.5–3.5 V will give a HIGH output
only to comparator output C2, and our digital estimation will correspond to 3.0 V. Hence,
the threshold for the upper comparator (its “ ” input) should be set at 2.5 V. Similarly for
the remaining comparators we work out the values which are given in the table below, where
Vest is the digital estimate which corresponds to each state.

Vin range Comparator Threshold Vest C2C1C0 Q1Q0
2.5–3.5 V C2 2.5 V 3.0 V 111 11
1.5–2.5 V C1 1.5 V 2.0 V 110 10
0.5–1.5 V C0 0.5 V 1.0 V 100 01
− 0.5–0.5 V – – 0.0 V 000 00

Using Ohm’s and Kirchoff’s Laws, we arrive at the resistance ratios shown in Fig. 29 in
order to achieve the desired comparator thresholds. All that remains is to determine the gate
logic to convert the pattern of comparator outputs to a 2-bit digital output. Generalizing
from the above, we see that we have agreement with our previous statements: For an n-bit
ADC, we require 2n 1 comparators, and the resolution is ∆V/2n+1, where ∆V is the full
range of analog input.

R/2

+

-
C

R

+

-
C

R

+

-
C

R/2

C2

Comb.

Logic

(Gates)

 C1

C0

29

• Successive Approximation ADCs

This technique is illustrated by Fig. 30, which is also the one given for Lab 5. It uses a
digital feedback loop which iterates once on successive clock cycles. The function of the
successive approximation register, or SAR, is to make a digital estimate of the analog input
based on the 1-bit output of the comparator. The current SAR estimate is then converted
back to analog by the DAC and compared with the input. The cycle repeats until the “best”
estimate is achieved. When that occurs, this present best estimate is latched into the output
register (written into memory). By far the most common algorithm employed by SARs is
the binary search algorithm. This is the one used by the SAR in Lab 5, and is illustrated in
the example in the next secion.

+5 V

Clock In

Analog
+

In

-

Vcc

311

Vee

_
8

8 8

 / /
8 Digital

 / Out

Figure 30: Scheme for 8-bit successive approximation, or feedback, ADC.

• Binary Search Example

In this example we will see the binary search algorithm in action. The binary search algorithm
can be summarized with the following words: Go to the midpoint of the remaining non-
excluded range. In our example, we assume an 8-bit ADC with an expected input voltage
range of 0 to 10 V. So, naturally we choose the digital output to be 000000002 = 0 when
the input is 0 V, and 111111112 = 255 when the input is 10 V. Hence, the LSB represents a
voltage step ∆V = 10/255 = 39.22 mV.

Let the input voltage be some arbitrary value, 7.09 V. Now let’s see how the algorithm
works. Translating the words for the algorithm, written above, to what the SAR actually
does is straightforward. The SAR always outputs one of two results, depending upon whether
the output from the comparator was TRUE or FALSE. More precisely, the comparator will issue
a HIGH if the current estimate is too small compared to the actual input, or a LOW if it is too
big. The SAR then does the following:

1. If estimate too small, add 1 to MSB− (n + 1) ; or

HCT574

AD557

DAC
8-bit

Register

Q D

74LS503 SAR

30

2. If estimate too big, subtract 1 from MSB− (n + 1) .

where n is the current clock cycle (see table).

Vin (V)

10

8

7.09 V

6

4

2

0

0 2 4 6 8
time

(clock cycles)

Figure 31: Binary search algorithm in action. The analog input is 7.09 V. The digital
estimate for each clock cycle is represented by the solid line, and corresponds to the value of
Vest in the table below.

Clock Cycle, n SAR Bits SAR Bit Sum Vest (V) comp. decision

0 01111111 127 4.98 too small
1 10111111 127 + 64 = 191 7.49 too big
2
3

10011111
10101111

191 − 32 = 159
159 + 16 = 175

6.24
6.86

too small
too small

4 10110111 175 + 8 = 183 7.18 too big
5
6

10110011
10110101

183 − 4 = 179
179 + 2 = 181

7.02
7.10

too small
too big

7 10110100 181 − 1 = 180 7.06 too small

The binary search algorithm is guaranteed to find the best possible estimate in a number
of clock cycles equal to the number of bits. In the example above, the best estimate was
actually determined on the seventh clock cycle (n = 6). But since the input value was
between the digital estimates 180 and 181, there was no way for the ADC to determine
which estimate was closer to the actual input value (without adding one more bit). Since
the input can fall anywhere within 180 and 181 with equal likelihood, there should be no

31

bias introduced with this method due to systematically choosing a digital estimate which is
too small or too big. This is the desired outcome.

The binary-search algorithm is fast and efficient, and also has the advantage that it
completes its estimation in a well determined number of clock cycles. Hence, the final digital
result can always be latched after n clock cycles, where n is the number of bits. (Many
ADCs actually wait one additional clock cycle in order to guarantee that bits have settled,
are latched properly, and are reset for the next input.

• Single/Dual Slope ADCs

These techniques are slower than flash or successive approximation, but in principle can be
quite accurate. The improved accuracy is for two reasons, because time, which is robustly
measured using digital techniques, is used as the measured quantity, and because there is
some immunity to noise pickup, especially for the dual slope case.

The single slope technique is illustrated in Fig. 32, which is taken from Figure 9.54 of
the text. The device near the input and the capacitor is an FET transistor which is used as
a switch. When the input to the FET gate, which comes from the Q output of the D-type
flip-flop, is LOW, then the FET is switched off, and it draws no current. However, when Q
goes HIGH, the FET pulls the + input of the comparator to ground, and holds it there. The
box marked “osc” represents a typical digital clock. The arrow within the circle connected to
+Vcc is the symbol for a “current source”, which means that its output is a constant current,
regardless of the impedance at its output (within reasonable bounds).

Figure 32: Scheme for single-slope ADC, from text.

The process begins when a rising-edge signal is sent to the flip-flop, for example from
a debounced switch. Since the D input is HIGH, then Q goes HIGH. Hence the counter, no
longer being held at reset by the flip-flop, begins counting. At the same time the FET is

32

− switched off and a signal is sent to the input of the comparator. Now we must analyze
the nature of this signal.

The voltage across a capacitor Vcap, is related to its stored charge by Vcap = Q/C, where
C is the capacitance. Differentiating gives dVC/dt = I/C. Now, because of the current
source, the right-hand side of this equation is a constant. Finally, since one side of the
capacitor is at ground, then the comparator + input is just Vcap. Hence, we can integrate
our expression over a time interval ∆t to give:

V+ = Vcap = (I/C)∆t

Since I/C is a known constant, this equation allows one to convert the V+ input to a time
∆t to be measured by the counter. This linear relation between V+ (= Vcap) and ∆t is
illustrated in the figure. The counter stops (is reset) and its final count stored in the register
when V+ becomes equal to Vin, thus changing the state of the comparator. This also resets
the flip-flop, thus returning the circuit to its initial state.

The dual-slope ADCs work similarly, but with a two-step process. First, a capacitor
is charged for a fixed time τ with a current source whose current is proportional to Vin,
I = αVin, where α is the constant of proportionality. Hence, Vcap is proportional to τ :
Vcap = αVinτ/C . The capacitor is then discharged at constant current I J and the time ∆t to
do so is measured. Therefore,

∆t = [C/I J] [ατ /C] Vin = βVin

where β = ατ/I J is a known constant.
This technique has two advantages compared with single-slope. First, we see from the

equation above that the result is independent of C. This is good, as precise capacitance
values are difficult to fabricate. Second, the integration of the input voltage in the charge-up
step allows 60 Hz pickup noise (or other periodic noise) to be averaged to zero.

33

n n

CLK

.

.

.

Q2

Q1

Q0

.

.

.

D2

D1

D0

Qn-1

Qn-2

Dn-1

Dn-2

Comb. Logic

or

RAM

6 Counters, Registers, and State Machines II

The general scheme for a state machine is given in Fig. 33. It has n bits of memory, k
inputs, and m outputs. It consists of a synchronous data register (lower box) which stores
the machine’s present state. A set of separate flip-flops can be used for this, as long as they
are clocked synchronously. The logic in the upper box acts upon the current state, plus any
inputs, to produce the machine’s next state, as well as any outputs. Upon each pulse of the
clock input CLK, the machine is moved from the present state to the next state. We will
introduce this topic using counters as examples, then moving to more general applications.
We will see, in fact, that the state machine prepresents a simple processor: The inputs can be
generalized to be the processor program and the logic might be replaced by a random-access
memory (RAM).

INPUTS k

A0-Ak-1

m OUTPUTS

B0-Bm-1

Figure 33: General scheme for state machine.

The strategy for applying this scheme to a given problem consists of the following:

1. Identify the number of required states, l. The number of bits of memory (e.g. number
of flip-flops) required to specify the m states is at minimum n = log2(m).

2. Make a state diagram which shows all states, inputs, and outputs.

3. Make a truth table for the logic section. The table will have n + k inputs and n + m
outputs.

4. Implement the truth table using our combinational logic techniques.

34

 State Machine Introduction: Synchronous Counters

Counters implemented as state machines are always synchronous, that is the entire circuit is
in phase with the clock. Recall that our previous “ripple” counters were asynchronous — logic
was initiated at different times throughout the circuit. Synchronous systems are essential
whenever a sequential system requires more than a very modest speed or complexity.

• Example: Up/down 2-bit Synchronous Counter

A 2-bit counter requires 4 states, with each state corresponding to one of the 4 possible 2-
bit numbers. Hence, 2 bits of memory are required. We will use 2 flip-flops (D-type) to
implement this. The state diagram is given in Fig. 34. Each circle represents one of the
states, and the arrows represent a clock pulse which offers a transition to another state (or
possibly to remain at the present state). The 4 states are specified by the 2 bits of memory:
A = 00, B = 01, C = 10, D = 11. Note that we are free to label the states as we choose,
as long as they are uniquely specified. However, in this case it is easiest to choose labels
which correspond to our desired outputs, that is the 2-bit binary sequence 00, 01, 10, and
11. Hence, these labels are equivalent to our desired outputs, call them Q1Q0, which are
available at each state. (Note that the lettered labels A–D are superfluous; they could be
omitted.)

Figure 34: State diagram for 2-bit up/down synchronous counter.

Our processor has one input bit u, which programs the up-counting (u = 1) or down-
counting (u = 0) functions. In this case, the state machine outputs are the two bits of the
present state, Q1Q0, so we do not reproduce them in our truth table. The truth table for
the logic is below.

u=1

A

00 u=1

D

11

u=0 u=0

u=0

B

01

u=0

u=1

C

10 u=1

35

 Present State Next State
u Q1Q0 D1D0
1 A 00 B 01
1 B 01 C 10
1 C 10 D 11
1 D 11 A 00
0 A 00 D 11
0 D 11 C 10
0 C 10 B 01
0 B 01 A 00

We can now envoke the logic as usual. We have 2 “outputs”, D0 and D1, which are to
be evaluated separately. From the truth table, or using a K-map, we see that

D1 = u ⊕ (Q0 ⊕ Q1) ; D0 = Q0

• Example: Divide-by-Three Synchronous Counter

Our state machine is supposed to count input pulses (input at the CLK) and set an output bit
HIGH on every 3rd input pulse. Note that this could represent either a 2-bit (total) counter,
or more generally the 2 least-significant bits of a many-bit counter.

We require 3 states, therefore we need 2 bits of memory (2 D-type flip-flops, for example).
These 2 flip-flops can describe 4 states, so we will have one “unused” state. A state diagram
is shown in Fig. 35, with one way of labelling the states and output bit (called p) given.

p=1

Figure 35: State diagram for a divide-by-3 synchronous counter.

The truth table for the combinational logic is below. It is important that the “extra
state” D = 11 be given an exit path, otherwise your processor may end up there upon
power-up and remain stuck. (This effect has probably come to your attention with the
“frozen” computer, which may require a reboot.) Also, note that we could have taken the
output p from any of the states A, B, or C.

A

00

D

11

B

01

C

10

36

Present State Next State Output
Q1Q0 D1D0 p

A 00 B 01 0
B 01 C 10 1
C 10 A 00 0
D 11 A 00 0

What are the logic expressions for our 3 “outputs” of this truth table (D1, D2, and p) ?
How would this be implemented with D-type flip-flops and logic gates? With JK flip-flops
replacing the D-type?

37

∼

7 Memories and Processors

 Memory Terminology

We will not discuss the topic of data storage technologies per se. We are mostly interested
here in the question of how data storage can be effectively organized. The important common
element of the memories we will study is that they are random access memories, or RAM.
This means that each bit of information can be individually stored or retrieved — with a
valid input address. This is to be contrasted with sequential memories in which bits must
be stored or retrieved in a particular sequence, for example with data storage on magnetic
tape. Unfortunately the term RAM has come to have a more specific meaning: A memory
for which bits can both be easily stored or retrieved (“written to” or “read from”). Here is
a rundown on some terms:

• RAM. In general, refers to random access memory. All of the devices we are considering
to be “memories” (RAM, ROM, etc.) are random access. The term RAM has also
come to mean memory which can be both easily written to and read from. There are
two main technologies used for RAM:

1.) Static RAM. These essentially are arrays of flip-flops. They can be fabricated
in ICs as large arrays of tint flip-flops.) “SRAM” is intrisically somewhat faster than
dynamic RAM.

2.) Dynamic RAM. Uses capacitor arrays. Charge put on a capacitor will produce
a HIGH bit if its voltage V = Q/C exceeds the threshold for the logic standard in use.
Since the charge will “leak” off through the resistance of the connections in times of
order 1 msec, the stored information must be continuously refreshed (hence the term
“dynamic”). Dynamic RAM can be fabricated with more bits per unit area in an IC
than static RAM. Hence, it is usually the technology of choice for most large-scale IC
memories.

ROM. Read-only memory. Information cannot be easily stored. The idea is that bits
are initially defined and are never changed thereafter. As an example, it is generally
prudent for the instructions used to initialize a computer upon initial power-up to be
stored in ROM. The following terms refer to versions of ROM for which the stored bits
can be over-written, but not easily.

PROM. Programmable ROM. Bits can be set on a programming bench by burning
“fusible links,” or equivalent. This technology is also used for programmable array
logic (PALs), which we will briefly discuss in class.

• EPROM. ROM which can be erased using ultraviolet light.

• EEPROM. ROM which can be erased electronically.

A few other points of terminology:

• As you know, a bit is a binary digit. It represents the smallest element of information.

• A byte is 8 bits.

• A “K” of memory is 210 = 1024 bits (sometimes written KB). And a megabit (MB) is
1K × 1K bits.

•

•

38

×

×

RAM is organized into many data “words” of some prescribed length. For example, a
RAM which has 8K = 8192 memory locations, with each location storing a data word
of “width” 16 bits, would be referred to as a RAM of size 8K 16. The total storage
capacity of this memory would therefore be 128KB, or simply a “128K” memory.
(With modern very large scale integration (VLSI) technology, a typical RAM IC might
be ∼ 16 MB.

• Besides the memory “size,” the other important specification for memory is the access
time. This is the time delay between when a valid request for stored data is sent to
a memory and when the corresponding bit of data appears at the output. A typical
access time, depending upon the technology of the memory, might be ∼ 10 ns.

 Memory Configuration

As stated above, the term “memory” refers to a particular way of organizing information —
by random access — which is distinct from the less specific term “data storage.” Figure 36
shows how an 8-bit RAM (8 1) is organized. (This is a very small memory, but illustrates
the concepts.) Our RAM consists of three main components: an 8-bit multiplexer, an 8-bit
demultiplexer, and 8 bits of storage. The storage shown consists of edge-triggered D-type
flip-flops. Hence, this is evidently a “static RAM.” (There is no fundamental reason for
using edge-triggered flip-flops. They could just as easily be level-triggered, like the simple
“clocked” S-R flip-flop of Fig. 14.)

Figure 36: An 8 × 1 bit RAM.

•

Data

In

D7

 .
.

.

.

D1
D0

8-->1

MUX

Q

Data

Out

write

enable

WE a2 a1 a0

/
3

 /
3

OE

a2 a1 a0

D Q

CLK

a2 a1 a0

Q1

Q0

D

Q7

.

1-->8

DeMUX

D Q

CLK

39

Our example RAM has 6 external connections which are inputs (data in, write enable
(WE), 3-state enable (OE), and 3 address bits (A = a2a1a0), and has one output connection
(data out), giving 7 external connections total, plus 2 for power/ground. To write information
to the RAM, one would supply a valid address, for example A = 101. The data bit to be
written to location 101 is to appear at the data input as either a logic HIGH or LOW signal.
And to enable the writing into this bit, the WE signal must be asserted. This then appears
at the Q5 output of the demultiplexer, and is passed on to the appropriate flip-flop, which
stores the input data bit and passes it on to the Q5 multiplexer input.

To read data from our RAM, one asserts an address, so that the selected bit is sent to
the MUX output and then the 3-state buffer. The purpose of the 3-state buffer is to ensure
that no digital outputs are directly connected together, for example if our RAM output were
connected to a data “bus,” which in turn was connected to several other devices. Recall
that the 3-state devices have outputs which are effectively disconnected if there is no enable
signal. So if the output data connection of our RAM is connected to a data bus, then the OE
signal must be coordinated with any other outputs also connected to the data bus. When it
is OK to read data from the RAM (all other output devices are disconnected from the bus),
the OE signal is asserted and the MUX output will appear at the RAM output.

One could of course also store the 8 bits of data directly to an 8-bit data register, rather
than using the RAM configuration outlined above. In this case, the number of external
connections is 17 (8 data in, 8 data out, and 1 clock), compared with the 7 of our RAM. For
a more realistic case where the number of bits of memory n is much larger than our example,
we generalize the above to arrive at 4 +log2(n) external connections for the RAM, compared
with 1 + 2n for the standalone register. Obviously for large n, the register is impractical,
whereas the RAM remains reasonable. Actually, it is even somewhat better than this for the
RAM case, since the number of external connections does not grow with the width of the
stored data words. Hence, a RAM of size 1K × 16 = 16 KB requires only 14 connections.
This is to be compared with 32,001 connections for the register. Note that the RAM can
only supply one bit at a time to the output. This may seem like a handicap, but is actually
well matched to standard microprocessors.

 A State Machine with Memory

For reference, our usual state machine configuration is shown again in Fig. 37. Now we
consider the use of a memory with a state machine, as depicted in Fig. 38. A random access
memory is used in place of the usual combinational logic. (A ROM has been specified, to
emphasize that we are not changing the memory — once it is defined initially, it is only read
from. The memory is used to conveniently encode the connection between present and next
states.

To start with, let’s assume a state machine with no external inputs or outputs. Then
the state machine’s present state (PS) becomes an address which is input to the ROM. The
data word stored in the ROM at that address then corresponds to the next state (NS). This
correspondence had been initially programmed into the ROM, just as the specific combina-
tional logic in our old state machine had to be pre-determined. So if the PS as defined by
the Q bits at the data register are, for example, 1001, then the ROM data word at address
1001 will be the NS which is then passed back to the register. When there are also external
inputs, as there will be for most anything of interest, these are combined with the PS bits
to form a longer address for the ROM. Similarly, any external outputs are combined with

40

n n

CLK

.

.

.

Q2

Q1

Q0

.

.

.

D2

D1

D0

Qn-1

Qn-2

Dn-1

Dn-2

Comb. Logic

or

RAM

INPUTS k

A0-Ak-1

m OUTPUTS

B0-Bm-1

Figure 37: The standard state machine configuration.

the NS bits in the data word.

This should become clear with an example.

• Example: Divide by 2 or 3 Counter

We will use a state machine with ROM, as in Fig. 38, to design a counter which either divides
by 2 or by 3, depending upon the value of an external input bit p. This state machine will
require 3 states, therefore we will need to describe 4 states, using 2 bits. We can label the
states A = 00, B = 01, C = 10, and D = 11. Let p = 0 be the divide by 2 case, and p = 1
the divide by 3. The output bit r = 1 when the present state is B. Otherwise r = 0. State
D is normally unused. The truth table is below. The student should draw the corresponding
state diagram.

p
Present State
Q1Q0

Next State
D1D0

r

0 00 A B 01 0
0 01 B A 00 1
0 10 C A 00 0
0 11 D A 00 0
1 00 A B 01 0
1 01 B C 10 1
1 10 C D 11 0
1 11 D A 00 0

This ROM requires 3 address bits (2 for PS and 1 for input bit p), which corresponds to
8 locations in memory. Each location has a data word which has length 3 bits (2 for NS and

41

1K X 8 ROM

1023

etc

6

8
i+1

i
10

i-1

etc

0

4

Present

State

Q3

Q2

Q1

Q0

D3

D2

D1

D0

Outputs
4

CLK

External
Inputs

Figure 38: Toward a microprocessor: Replacing the combinational logic with a memory.

1 for the output bit r). Therefore, the size of this memory is 8 × 3, or 24 total bits. A very
small ROM indeed. The programming of the ROM is very straightforward and can be read
directly from the truth table above. We just need to set an encoding convention. Let the
addresses be encoded as pQ1Q0 and the data words as D1D0r. For example, let’s look at
the 5th row of the truth table. The address would be 100 and the data word at this address
would be 010. The remaining bits of the ROM would be programmed in the same way. So
one would initially “burn in” these bit patterns into the ROM and put it into the circuit.
That’s all there is to it. Of course if one were careful not to overwrite the memory, or if an
evolving logical pattern were required, then a RAM could be used instead of the ROM.

• Generalization to Microprocessors

A state machine with zero input bits can perform a counter-like function, but not more:
its next state is limited to be a function only of the present state. A single input bit can
be used to “program” the state machine to behave in one of two possible ways for each
present state, as we discussed, for example, with the up/down counter of Section 4.4.1, or
the example in the preceeding section. On the other hand, with n inputs, the machine can
perform 2n different operations. So, for example, with n = 8 the machine can perform one
of 256 different operations on each clock cycle. This tremendous potential and flexibility.
The input bits can themselves be sequenced — stored externally in a specific sequence which

4

Next

State

 d7 d6 d5 d4 d3 d2 d1 d0

42

is then applied step by step to the state machine inputs on successive clock cycles. Such a
stored sequence of operations is a program and the 256 operations represent the programming
operations. In Fig. 38 we have essentially configured a simple microprocessor. The inputs
and outputs would need to be connected to buses (via 3-state buffers where appropriate),
which in turn are also connected to memories which store the program and any output or
input data. The buses would also be connected to various input/output devices, mass storage
devices, etc.

	1 Basic Digital Concepts
	Binary Logic States
	Binary Arithmetic
	Representation of Negative Numbers
	Hexadecimal Representation

	2 Logic Gates and Combinational Logic
	Gate Types and Truth Tables
	Boolean Algebra and DeMorgan’s Theorems
	Example: Combining Gates
	Gate Interchangeablilty
	DeMorgan

	Symbolic Logic
	Logic Minimization and Karnaugh Maps
	K-map Example 2
	K-map Example 3: Full Adder
	Si Cout i
	Making a Multiplier from an Adder

	Multiplexing
	2.5.1 A 4-bit MUX Design

	3 Flip-Flops and Introductory Sequential Logic
	Simple Latches
	• Latch Example: Debounced Switch

	Clocked Flip-flops
	• Edge Triggered Flip-Flops

	4 Counters, Registers, and State Machines
	Divide by Two Counter
	• Using the JK Flip-flop

	Asynchronous Counter
	Registers
	• Basic Register
	• Shift Registers

	5 Analog/Digital Conversion
	A/D Resolution
	D/A Conversion
	• The R-2R Ladder

	A/D Conversion
	• Flash ADCs
	• Successive Approximation ADCs
	• Binary Search Example
	• Single/Dual Slope ADCs

	6 Counters, Registers, and State Machines II
	State Machine Introduction: Synchronous Counters
	• Example: Up/down 2-bit Synchronous Counter
	• Example: Divide-by-Three Synchronous Counter

	7 Memories and Processors
	Memory Terminology
	Memory Configuration
	A State Machine with Memory
	• Example: Divide by 2 or 3 Counter
	• Generalization to Microprocessors

