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1 Changing Electric and Magnetic 

Field 

1.1 Motional emf 

When charge moves there acts the Lorenz force on them 

 F = qE + qv × B (1.1) 

The charges move according the force experienced by them. 

The motion of the charges generates a current and thus an 

emf on the medium in which the charges are moving. This 

is called motional emf. 

Lorentz force law is very useful to determine the 

direction of the induced current. To calculate the magnitude 

we need to know the Faraday’s law of induction. 
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1.2 Faraday’s Law 

When the magnetic flux (Φ = R B · dS) somehow changes in 

a closed conducting system (be it a closed loop of wire or 

something a bend and closed rod) there creates an emf 

  (1.2) 

The significance of the negative sign is, the induced emf 

tries to oppose the change of the magnetic flux. 

The basic principle the Faraday’s law states is: A 

changing magnetic field induces an electric field. 

   a

 (1.3) 

This is Faraday’s law, in integral form. We can convert it to 

differential form by applying Stokes’ theorem: 

∂B 

 ∇ × E = −  (1.4) 

∂t 
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This equation tells us that if you change a magnetic field, 

you’ll create an electric field. In turn, this electric field can 

be used to accelerate charges which, in this context, is 

usually thought of as creating a current in wire. The process 

of creating a current through changing magnetic fields is 

called induction. 

Faraday’s law tells us that if you change the magnetic 

flux through S then a current will flow. There are a number 

of ways to change the magnetic field. You could simply move 

a bar magnet in the presence of circuit, passing it through 

the surface S; or you could replace the bar magnet with 

some other current density, restricted to a second wire C0, 

and move that; or you could keep the second wire C0 fixed 

and vary the current in it, perhaps turning it on and off. All 

of these will induce a current in C. 

However, there is then a secondary effect. When a 

current flows in C, it will create its own magnetic field. This 

induced magnetic field will always be in the direction that 

opposes the change. This is called Lenz’s law. If you like, 

”Lenz’s law” is really just the minus sign in Faraday’s law. 
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Example A metal bar of mass m slides frictionlessly on 

two parallel conducting rails a distance l apart (see figure 

below) . A resistor R is connected across the rails, and a 

uniform magnetic field B, pointing into the page, fills the 

entire region. 

 

Figure 1.1: Current created by moving bar in a magnetic 

field 

(a) If the bar moves to the right at speed v, what is 

the current in the resistor? In what direction does it flow? 

(b) What is the magnetic force on the bar? In 

whatdirection? 

(c) If the bar starts out with speed v0 at time t = 0, 

and is left to slide, what is its speed at a later time t ? 
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(d) The initial kinetic energy of the bar was, of 

course, 

 . Check that the energy delivered to the resistor is 

exactly . 

Solution:  

. The minus sign tells you the direction of flow 

of the current. (v×B) is upward, in the bar, so the current is 

downward through the resistor. 

, to the left. 

. Hence 

(d) The energy goes into heat in the resistor. The power 

delivered to resistor is I2R, so 

 

we have taken ; So  

The total energy delivered to the resistor is 
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Example: Faraday’s disk generator: A metal disk of 

radius a rotates with angular velocity ω about a vertical 

axis, through a uniform field B , pointing up. A circuit is 

made by connecting one end of a resistor to the axle and the 

other end to a sliding contact, which touches the outer edge 

of the disk (See figure). Find the current in the resistor. 

 

Figure 1.2: Current created by rotating metal disk 

Solution: The speed of a point on the disk at a distance 

s from the axis is v = ωs, so the force per unit charge is fmag = 

v × B = ωsBˆs. The emf is therefore 
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So the current is 

 

The flux law or Faraday-Letz rule can also be written as in 

terms of electric field 

  (1.5) 

Example: A uniform magnetic field B(t), pointing straight 

up, fills the shaded circular region, made by conducting 

material, as shown in the figure below. If B is changing with 

time, what is the induced electric field? 
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Figure 1.3: Induced Current by changing magnetic field 

Solution: E points in the circumferential direction, just 

like the magnetic field inside a long straight wire carrying a 

uniform current density. Draw an Amperian loop of radius 

s, and apply Faraday’s law: 

 
Hence 

E  

If B is increasing, E runs clockwise, as viewed from above. 

Example: A line charge λ is glued onto the rim of a wheel 

of radius b,. The spokes are made of some nonconducting 

material. The wheel is then suspended horizontally, as 

shown in figure below so that it is free to rotate. In the 

central region, which is made by conducting material, out to 

radius a, there is a uniform magnetic field B0, pointing up. 

Now someone turns the field off. What happens?  
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Figure 1.4: Charged disk rotates because of changing B 

solution: The changing magnetic field will induce an 

electric field, curling around the axis of the wheel. This 

electric field exerts a force on the charges at the rim, and the 

wheel starts to turn. According to Lenz’s law, it will rotate in 

such a direction that its field tends to restore the upward 

flux. The motion, then, is counterclockwise, as viewed from 

above. 
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Faraday’s law, applied to the loop at radius b , says 

, or E  

The torque on a segment of length dl is (r × F), or bλE dl. 

The total torque on the wheel is therefore 

 

The angular momentum imparted to the wheel is 

 

It doesn’t matter how quickly or slowly you turn off the 

field; the resulting angular velocity of the wheel is the same. 

Now the question is - where is the angular momentum 

coming from? wait for the next section. 
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1.3 Inductance 

1.3.1 Self Inductance 

Suppose that a constant current I flows along some curve C. 

This gives rise to a magnetic field and hence a flux Φ = 

R
S B·dS through the surface S bounded by C. Now increase 

the current I. This will increase the flux Φ . But we’ve just 

learned that the increase in flux will, in turn, induce an emf 

around the curve C. The minus sign of Lenz’s law ensures 

that this acts to resist the change of current. The work 

needed to build up a current is what’s needed to overcome 

this emf. 

If a current I flowing around a curve C gives rise to a flux 

Φ = RS B · dS then the inductance L of the circuit is defined 

to be 

 (1.6) The inductance is 

a property only of our choice of curve C. 
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Example: Self inductance of a Solenoid: A solenoid 

consists of a cylinder of length l and cross-sectional area A. 

We take  so that any end-effects can be neglected. A 

wire wrapped around the cylinder carries current I and 

winds N times per unit length. The magnetic field through 

the centre of the solenoid to be 

 B = µ0IN (1.7) 

 

Figure 1.5: 

This means that a flux through a single turn is Φ0 = 

µ0INA. The solenoid consists of Nl turns of wire, so the total 

flux is 

Φ = µ0IN2Al = µ0IN2V 
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with V = Al the volume inside the solenoid. The inductance 

of the solenoid is therefore 

L = µ0N2V 

1.3.2 Mutual Inductance 

Say there are two loops placed in reasonably closed 

distance and current I1 passes through loop 1. The current 

will create magnetic field. That magnetic field will create 

magnetic flux around the second loop (loop 2). It can be 

proved that the flux flown in the second loop due to current 

in 1st loop is proportional to I1. 
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Figure 1.6: Mutual inductance 

 Φ2 = M21I1 (1.8) 

where M21 is the constant of proportionality; it is known as 

the mutual inductance of the two loops. 

M21 is a purely geometrical quantity, having to do with 

the sizes, shapes, and relative positions of the two loops. 

If we reverse the situation: current I2 passes through 

loop 2. The current will create magnetic field. That magnetic 

field will create magnetic flux around loop 1. It can be 

proved that the flux flown in the loop 1 due to current in 

loop 2 is proportional to I2 with the same proportionality 

constant. i.e 

Φ1 = M12I2 

and 

(1.9) 

M21 = M12 (1.10) 

Whatever the shapes and positions of the loops, the flux 

through loop 2 when we run a current I around loop 1 is 

identical to the flux through loop 1 when we send the same 

current I around loop 2. We drop the subscripts and call 

them both M. 
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Example: A short solenoid (length l and radius a, with 

n1 turns per unit length) lies on the axis of a very long 

solenoid (radius b,n2 turns per unit length ) as shown in 

Figure below. Current I flows in the short solenoid. What is 

the flux through the long solenoid? What is the mutual 

inductance of the system? 

Solution: Since the inner solenoid is short, it has a very 

complicated field; moreover, it puts a different flux through 

each turn of the outer solenoid. It would be a very tough 

task to compute the total flux this way. However, if we use 

the equality of the mutual inductances, the problem 

becomes very easy. 

Just look at the reverse situation: run the current / 

through the outer solenoid, and calculate the flux through 

the inner one. The field inside the long solenoid is constant: 

B = µ0n2I 

so the flux through a single loop of the short solenoid is 

Bπa2 = µ0n2Iπa2 
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There are n1l turns in all, so the total flux through the inner 

solenoid is 

Φ = µ0πa2n1n2lI 

This is also the flux a current I in the short solenoid would 

put through the long one, which is what we set out to find. 

Incidentally, the mutual inductance, in this case is 

M = µ0πa2n1n2l 

1.4 Magnetostatic Energy 

The definition of inductance is useful to derive the energy 

stored in the magnetic field. Let’s take our circuit C with 

current I. We’ll try to increase the current. The induced emf 

is 

 

As we mentioned above, the induced emf can be thought of 

as the work done in moving a unit charge around the circuit. 

But we have current I flowing which means that, in time δt, 
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a charge Iδt moves around the circuit and the amount of 

work done is 

 
The work needed to build up the current is just the opposite 

of this. Integrating over time, we learn that the total work 

necessary to build up a current I along a curve with 

inductance L is 

 

Following our discussion for electric energy, we identify this 

with the energy U stored in the system. We can write it as 

S 

 A 

where, in the last step, we’ve used the fact that the current 

density J is localised on the curve C to turn the integral into 

one over all of space. At this point we turn to the Maxwell 

equation ∇ × B = µ0J to write the energy as 
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 A 

 

We assume that B and A fall off fast enough at infinity so 

that the first term vanishes. We’re left with the simple 

expression 

 B 

Combining this with electrostatic energy, we have the 

energy stored in the electric and magnetic fields, 

 


