Syllabus: Application of Biot-Savart's law to determine the magnetic field of a straight conductor, circular coil.

Magnetic field due to a straight conductor

Let a straight wire be considered whose magnetic field is to be determined at a certain point P which is nearby the conductor at a distance 'a'. Let a small portion of length dl be considered whose distance from P is ' \vec{r} '.

From Biot-savart law, magnetic field due to current carrying element dl at point P is

$$dB = \frac{\mu \cdot Idlsin\alpha}{4\pi r^2} - \dots - (i)$$

from fig, sina = $\frac{a}{r} = cos\theta$
 $r = \frac{a}{cos\theta} - \dots - (ii)$
again, tan $\theta = \frac{a}{l}$
 $dl = a \sec^2 \theta d\theta - \dots - (iii)$

From the above three equations

$$dB = \frac{\mu_{\circ}}{4\pi} \frac{Ia \sec^{2} \theta d\theta \ \cos\theta}{(\frac{a}{\cos\theta})^{2}}$$
$$dB = \frac{\mu_{\circ}}{4\pi} \frac{Ia \sec^{2} \theta d\theta \ \cos\theta}{(a)^{2}} \cos^{2} \theta$$
$$dB = \frac{\mu_{\circ}}{4\pi} \frac{Icos\theta d\theta}{a}$$

Total magnetic field due to straight current carrying conductor is

$$B = \int_{-\theta_{1}}^{\theta_{2}} \frac{\mu_{\circ}}{4\pi} \frac{I\cos\theta d\theta}{a}$$
$$B = \frac{\mu_{\circ}}{4\pi} \frac{I}{a} \int_{-\theta_{1}}^{\theta_{2}} \cos\theta d\theta$$
$$B = \frac{\mu_{\circ}}{4\pi} \frac{I}{a} [\sin\theta] \frac{\theta_{2}}{-\theta_{1}}$$
$$B = \frac{\mu_{\circ}I}{4\pi} \frac{I}{a} (\sin\theta_{2} + \sin\theta_{1})$$

This is the final expression for total magnetic field due to straight current carrying conductor.

If the conductor having infinite length then,

$$\theta_{1} = \theta_{2} = \frac{\pi}{2}$$

$$B = \frac{\mu \circ I}{4\pi a} (\sin \frac{\pi}{2} + \sin \frac{\pi}{2})$$

$$B = \frac{\mu \circ I}{4\pi a} 2$$

$$B = \frac{\mu \circ I}{2\pi a} Tesla$$

Magnetic field due to current carrying circular coil at its center

Consider a circular current carrying coil having radius r and center O. When the current is passing through the circular coil, magnetic field is produced. To find the magnetic field at the center of the circular coil, consider a length of element dl at point p which is tangent to the circular coil. The angle between element dl and radius r is 90° .

According to the Biot-Savart law, the magnetic field at the center of the circular coil due to element dl is

$$dB = \frac{\mu_{\circ}}{4\pi} \frac{Idlsin\theta}{r^2} = \frac{\mu_{\circ}}{4\pi} \frac{Idlsin90}{r^2} = \frac{\mu_{\circ}}{4\pi} \frac{Idl}{r^2}$$

Total magnetic field due to the circular coil is

$$B = \int_{0}^{2\pi r} dB = \int_{0}^{2\pi r} \frac{\mu_{\circ}}{4\pi} \frac{Idl}{r^{2}} = \frac{\mu_{\circ}}{4\pi} \frac{I}{r^{2}} \int_{0}^{2\pi r} dl$$
$$= \frac{\mu_{\circ}}{4\pi} \frac{I}{r^{2}} [l] \frac{2\pi r}{0}$$
$$= \frac{\mu_{\circ}}{4\pi} \frac{I}{r^{2}} 2\pi r$$
$$= \frac{\mu_{\circ}}{2} \frac{I}{r}$$

Magnetic field at the axis of the circular current carrying coil

Consider a circular coil having radius a and centre O from which current I flows in anticlockwise direction. The coil is placed at yz plane so that the centre of the coil coincide along x-axis. P be the any point at a distance x from the centre of the coil where we have to calculate the magnetic field. let dl be the small current carrying element at any point A at a distance r from the point P rehere $n = \sqrt{(62 + 1)^2}$

where
$$r = \sqrt{(x^2 + a^2)}$$

the angle between r and dl is 90°. Then from Biot-Savart law, the magnetic field due to current carrying element dl is

$$dB = \frac{\mu_{\circ}}{4\pi} \frac{Idlsin\theta}{r^2} = \frac{\mu_{\circ}}{4\pi} \frac{Idlsin90}{r^2} = \frac{\mu_{\circ}}{4\pi} \frac{Idl}{r^2}$$

the direction of magnetic field is perpendicular to the plane containing dl and r. So the magnetic field dB has two components

dBcos/ is along the y-axis

*dBs*0*n*/ is along the x-axis

Similarly, consider another current carrying element dl' which is diametrically opposite to the point A. The magnetic field due to this current carrying element dB' also has two

components

dB'cos/ is along the y-axis

dB's0n / is along the x-axis

Here both dBcos/ and dB'cos/ are equal in magnitude and opposite in direction. So they cancle each other. Similarly, the components dBs0n/ and dB's0n/ are equal in magnitude and in same direction so they adds up.

Total magnetic field due to the circular current carrying coil at the axis is

$$B = \int_{0}^{2\pi a} dB \sin\theta = \int_{0}^{2\pi a} \frac{\mu_{\circ}}{4\pi} \frac{Idl}{r^{2}} \frac{a}{r}$$

since $\sin\theta = \frac{a}{r}B = \int_{0}^{2\pi a} \frac{\mu_{\circ}}{4\pi} \frac{Idl}{(x^{2} + a^{2})} \frac{a}{(x^{2} + a^{2})^{\frac{1}{2}}} = \frac{\mu_{\circ}}{4\pi} \frac{Ia}{(x^{2} + a^{2})^{\frac{3}{2}}} \int_{0}^{2\pi a} dl$
$$B = \frac{\mu_{\circ}}{4\pi} \frac{Ia}{(x^{2} + a^{2})^{\frac{3}{2}}} 2\pi a$$
$$B = \frac{\mu_{\circ}}{2} \frac{Ia^{2}}{(x^{2} + a^{2})^{\frac{3}{2}}} Tesla$$

This is the expression for magnetic field due to circular current carrying coil along its axis. If the coil having N number of turns then magnetic field along its axis is

$$B = \frac{\mu_{\circ}}{2} \frac{INa^2}{(x^2 + a^2)^{\frac{3}{2}}} Tesla$$

Magnetic field along axis of solenoid

A solenoid is a ling cylindrical coil having number of circular turns. Consider a solenoid having radius R consists of n number of turns per unit length. Let P be the point at a distance x from the

origin of the solenoid where we have to calculate the magnitude of the magnetic field. The current carrying element dx at a distance x from origin and a distance r from point P

$$r = \sqrt{(R^2 + (x_4 - x)^2)}$$

The magnetic field due to current carrying circular coil at any axis is

$$dB = \frac{\mu \circ}{2} \frac{IR^2}{r^3} \times N$$

where $N = ndx$
then

$$dB = \frac{\mu \circ nIR^2 dx}{2r^3} - - - - - (i)$$

$$sin\Phi = \frac{R}{r}$$

 $r = Rcosec\Phi - - - - - (a)$

$$tan\Phi = \frac{R}{\frac{x}{2} - x}$$

 $x - x = Rcot\Phi$

$$\frac{dx}{d\Phi} = Rcosec^2\Phi$$

 $dx = Rcosec^2\Phi d\Phi - - - - (b)$

Now from above three equations, we get,

$$dB = \frac{\mu_{\circ}}{2} \frac{nIR^{2}Rcosec^{2}\Phi d\Phi}{R^{3}cosec^{3}\Phi}$$
$$dB = \frac{\mu_{\circ}}{2}nIsin\Phi d\Phi$$

Now total magnetic field can be obtained by integrating from Φ_1 to Φ_2 , we get

$$B = \frac{\mu \circ nI}{2} \int_{\Phi_1}^{\Phi_2} \sin \Phi d\Phi$$
$$B = \frac{\mu \circ nI}{2} \left[-\cos \Phi\right]_{\Phi_1}^{\Phi_2}$$
$$B = \frac{\mu \circ nI}{2} \left(\cos \Phi_1 - \cos \Phi_2\right)$$

Hence this expression gives the magnetic field at point p of the solenoid of finite length. For infinite long solenoid $6_7 = 0, 6_7 = \pi$ So

$$B = \frac{\mu \circ nI}{2} (\cos 0 - \cos \pi)$$
$$B = \frac{\mu \circ nI}{2} (1+1)$$
$$B = \mu \circ nI Tesla$$

Home work:

Find the magnetic field for the following partial loops

Note on problems when you have to evaluate a B field at a point from several partial loops Only loop parts contribute, proportional to angle (previous slide)

Straight sections aimed at point contribute exactly 0

Be careful about signs, e.g. in (b) fields partially cancel, whereas in (a) and (c) they add