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1 Conservation of energy in three 

dimension 

The conservation of energy can be easily extended to three 

dimension. Potential energy in three dimension becomes 

dependent on the distance from the origin (radius vector) and 

it is the integration of forces with the radius vector from a 

reference point r0. 

Z r 

 U(r) ≡ − F(r0) · dr0 (1.1) 
r0 
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Force and displacement may not be in the same direction as 

shown in the figure below. In two dimension case this 

becomes Fr cosθ. In three dimension we need to perform line 

integral. 

The integration of force give the difference of kinetic energy 

as before. 

dv 

F = m  

dt 

  r 

  (1.2) 

1.1 Conservative force: 

A force F acting on a particle is conservative if and only if it 

satisfies two conditions: (i) F depends only on the particle’s 

position r (and not on the velocity v, or the time t, or any other 

variable ; that is, F = F(r) (ii) For any two points 1 and 2 , the 

work W(1 → 2) done by F is the same for all paths between 1 
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and 2 A force F(r) to be conservative a necessary and 

sufficient condition is to have the curl of the force to be zero. 

 ∇ × F = 0 (1.3) 

Conservative force means the work done is path independent. 

We will discuss these point in details. Let us first write the 

force and potential energy relation in three dimension. Let us 

consider a particle acted on by a conservative force F(r), with 

corresponding potential energy U(r), and examine the work 

done by F(r) in a small displacement from r to r + dr. We can 

evaluate this work in two ways. On the one hand, it is, by 

definition, 

W(r → r + dr) = F(r) · dr 

(1.4

) 

= Fxdx + Fydy + Fzdz 

for any small displacement dr with components (dx,dy,dz). On 

the other hand, we have seen that the work W(r → r+dr) is 

the same as (minus) the change in PE in the displacement: 

W(r → r + dr) = −dU = −[U(r + dr) − U(r)] 

= −[U(x + dx,y + dy,z + dz) − U(x,y,z)] 

(1.5

) 

We know from the definition of derivative 
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  (1.6) 

So the work done is 

  (1.7) 

The two expression of work in equation (1.4) and (1.7) are 

equivalent. So we get 

  (1.8) 

That is, F is the vector whose three components are minus the 

three partial derivatives of U with respect to x,y, and z. A 

slightly more compact way to write this result is this: 

 F  (1.9) 

From vector calculus we know that the gradient of a scalar 

function is defined as 

  (1.10) 

So the force is the gradient of the potential with a negative 

sign 

 F = −∇U (1.11) 
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This important relation gives us the force F in terms of 

derivatives of U, just as the definition (1.1) gave U as an 

integral of F. When a force F can be expressed in the form 

(4.33), we say that F is derivable from a potential energy. 

Thus, we have shown that any conservative force is derivable 

from a potential energy. 

Example 1.1: The potential energy of a certain particle is 

U = Axy2+B sinCz, where A,B and C are constants. 

What is the corresponding force? 

Solution: To find F we have only to evaluate the three 

partial derivatives. In doing this, you must remember that 

∂U/∂x is found by differentiating with respect to x, treating y 

and z as constant, and so on. Thus ∂U/∂x = Ay2, and so on, and 

the final result is 

F  

Now we prove the statements about the conservative force 

stated before. Suppose a force is conservative which 

essentially means that the work done to move one point to 

another point is path independent. Look at the figure below. 

We do work to move particle from point A to B. Path I is the 

path ACB, Path II is the path ADFB. The work done is same for 

both paths. 
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 Z Z 

 WACB = F · dr = WADFB = F · dr 

 

Figure 1.1: 

So 

 Z Z 

 F · dr − F · dr = 0 
 ACB ADFB 

Now the sign of line integral changes when we reverses the 

direction of integration. 

 Z Z 

 F · dr + F · dr = 0 
 ACB BFDA 

hence I 

ACB ADFB 
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F · dr = 0 

So the work done in traveling the whole path once in a closed 

cycle is ZERO. 

From the stokes theorem we know 

 I ZZ 

 F · dr = (∇ × F) · nds 

So if the line integral of a vector around a closed curve is zero 

then the curl of the vector must be zero. 

∇ × F = 0 

Finally we summaries our discussion of conservative force 

If a force F is conservative in a region then all these 

following condition satisfies. Any one of the following five 

conditions implies all the others. 

∇ × F = 0 at every point of the region. 

H F·dr = 0 around every simple closed curve in the region. 

F is conservative, that is  r is independent of the 

path of integration from A to B. (The path must, of 

course, lie entirely in the region.) 

F · dr is an exact differential of a single valued function. 
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F = −∇ · U , where U is a scalar potential.  
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Example 1.2: A particle of mass m moves in the xy plane 

so that its position vector is 

r = acosωti + bsinωtj 

where a,b and ω are positive constants and a > b. 

(a) Show that the particle moves in an ellipse. (b) Show 

that the force acting on the particle is always directed 

toward the origin. 

(c) Find the kinetic energy at points A and B of the figure 

as shown below. 

(d) Find the work done by the force field in moving 

theparticle from A to B. 

(e) Show that the total work done by the field in movingthe 

particle once around the ellipse is zero. 

(f) Show that the force field is conservative. 

(g) Find the potential energy at points A and B. (h) Find the 

total energy of the particle and see that it is constant. 



 Newtonian Mechanics: Advanced 

 

 

Figure 1.2: 

Solution: (a) The position vector is 

r = xi + yj = acosωti + bsinωtj 

So x = acosωt,y = bsinωt 

Then 

(x/a)2 + (y/b)2 = cos2 wt + sin2 ωt = 1 

the ellipse is so given by x2/a2 + y2/b2 = 1 (b) Assuming the 

particle has constant mass m, the force acting on it is 

 dv d2r d2 
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F = m   = m
 = m [(acosωt)i 
+ (bsinωt)j] dt

 dt2 dt2 

= −mω2[acosωti + bsinωtj] = −mω2r 

which shows that the force is always directed toward the 

origin. 

(c) Velocity 

v = dr/dt = −ωasinωti + ωbcosωtj 

Kinetic energy 

 

Kinetic energy at A[ where cos  

Kinetic energy at B[ where cos 

(d) Work done 
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r 

Work done =  

= kinetic energy at A − kinetic energy at B 

(e) We can find the work done by directly integrating the 

force also. See that at A and B,t = 0 and t = π/2ω respectively. 

Then the Work done in moving the particle from A to 

B 

r 
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Similarly for a complete circulation around the ellipse, t 

goes from 0 to t = 2π/ω. 

Work done =  

 

You can do as you did in part (d) expect the integral goes 

from one point to the same point, say A to A and you get zero. 

r 

 

(f) 

F = −mω2r = −mω2(xi + yj) 
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We calculate the curl of force 

= 0 

As the curl of the force is zero, the force is conservative. 

(g) Since the field is conservative there exists a potential 

V such that 

F k 

Then 

 ∂V/∂x = mω2x, ∂V/∂y = mω2y, ∂V/∂z = 0 

from which, omitting the constant, we have 

 

which is the required potential. 

(h) Kinetic energy at any point 
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Potential energy at any point 

 

Add and get 

 

The energy depends only on the constants a and b so the 

energy is constant. 

 

Solution: (a) The force field F is conservative if and only 

if curlF = ∇ × F = 0 
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= 0 

(b) As we know the force field F is conservative if and only 

if there exists a scalar function or potential V (x,y,z) such that 

F = −gradV = −∇V . 

F k 

k 

Hence if F is conservative we must be able to find V such 

that 

∂V/∂x = 6xz2 − y2z3 

∂V/∂y = −2xyz3 
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∂V/∂z = 6x2z − 3xy2z2 

To find the potential we need to integrate each component 

of the force and omit the common terns. 

Integrate  with respect to x keeping y and z constant. 

Then 

V = 3x2z2 − xy2z3 + g1(y,z) 

where g1(y,z) is a function of y and z 

Similarly integrate  with respect to y (keeping x and z 
constant), we have 

V = −xy2z3 + g2(x,z) 

∂V 

Then integrate  with respect to z (keeping x and y con- 

∂z 

stant) 

The trick is to add all three V 0s and take one term only 

once. 3x2z2 and −xy2z3 both the terms have appeared twice. 

We take both the term only one time. So 

the required potential is 

V = 3x2z2 − xy2z3 + c 
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2 Collision in 2D in Center of Mass 

frame 

2.1 Formulation of the problem 

Consider two particles of masses m1 and m2 with velocities v1 

and v2 respectively. The center of mass velocity V is 

V  

As shown in the part (a) of the figure below, V lies on the line 

joining v1 and v2 The velocities in the COM system are 

v1c = v1 − V 

 

 Figure2.1: 



 Newtonian Mechanics: Advanced 

 

and 

v2c = v2 − V 

 

v1c and v2c lie back to back along the relative velocity vector v 

= v1 − v2 as shown in the part (b) of the figure. 

The momenta in the COM system are 

p  

= µv p

 

= −µv 

Here µ = m1m2/(m1 + m2) is the reduced mass of the system, 

the natural unit of mass in a two-particle system. The total 

momentum in the COM system is zero. The total momentum 

in the Lab frame is 

m1v1 + m2v2 = (m1 + m2)V 
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and since total momentum is conserved in any collision, V is 

constant. We can use this result to help visualize the velocity 

vectors before and after the collision. 

Now look at the figure below. Part ( a ) visualizes the path 

of two colliding particles before and after the collision in the 

lab frame. Part ( b ) shows the initial velocities in the Lab and 

COM systems. All the vectors lie in the same plane, and v1c and 

v2c must be in opposite direction as the total momentum in 

the C system is zero. After the collision, as shown in part ( c ), 

the velocities in the COM system are again in opposite 

direction. Part (c) also shows the final velocities in the lab 

system. Note that the plane of part (c) is not necessarily the 

plane of part (a) 

 

Figure 2.2: 

We will derive the mathematical formulation for the 

elastic collision and leave the inelastic collision as the 
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treatment will be complicated. Conservation of energy 

applied to the COM system gives, for elastic collisions, 

 

Total momentum is zero in the C system. We therefore have 

m1v1c − m2v2c = 0 m1v10c 

− m2v20c = 0 

Using momentum conservation to eliminate v2c and   from 

the energy equation gives 

 

or 

  (2.1) 

Similarly, 

  (2.2) 

In an elastic collision, the speed of each particle in the COM 

system is the same before and after the collision; the velocity 

vectors simply rotate in the scattering plane. 
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Now consider one of the particles, m2 is initially at rest in 

the laboratory. So v2 = 0. This case is important as it happens 

in many real experiment. 

In our earlier discussion of velocities before the collision, 

substitute v2 = 0. 

V  

v 

v  

The situation is explained in the figure below. Here the 

trajectories after the collision in the COM and Lab systems are 

shown. You see that v10 makes angle θ1 , and v20 makes angle 

θ2 in Lab frame. In the COM frame the velocity vectors rotates 

with angle Θ which is called the scattering angle. 

Because these angles are in L, they are in principle 

measurable in the lab. The velocity diagrams can be used to 

relate θ1 and θ2 to the scattering angle Θ, as we shall do just 

now 
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2.2 Elastic scattering when target particle at 

rest 

Now consider the elastic scattering of a particle of mass m1 

and velocity v1 from a second particle of mass m2 at rest. 

The scattering angle Θ in the COM system is unrestricted, 

but the conservation laws impose limitations on the 

laboratory angles, as we now show. The center of mass 

velocity has magnitude 

Figure2.3: 
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  (2.3) 

The velocity of COM is parallel to v1. The initial velocities in 

the COM system are 

v 

(2.4) 

v 

The mass m1 is scattered through angle Θ in the COM system 

as shown in figure above. This essentially means that the 

mass m1 deviates an angle Θ from its original direction in the 

COM 

frame. 

Now look at the diagram below. This is velocity diagram of 

the collision. Look at the figure 2.3 first. You must see that the 

initial direction of m1 is same both in Lab and COM frame 

(although the magnitude of velocities are different) as well as 

the velocity of COM frame which is V . θ1 is the angle between 

the initial and final direction of mass m1 in the Lab frame. Θ is 

the angle between the initial and final direction of mass m1 in 
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the COM frame. As initial direction of m1 is same both in Lab 

and COM frame we draw the vector direction of V , v1, v1c along 

same line. 

 

Figure 2.4: 

Now it should be clear from the velocity addition rule that 

 

and 

 

Hence we write 

 

since the scattering is elastic, . Hence 
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From (2.3) and 2.4 we get V/v1c = m1/m2. So, 

  (2.5) 

You can easily check few important results 

  (2.6) 

and 

  (2.7) 

(iii) If m1 < m2, all scattering angles for m1 in LS are 

possible. 

(iv) If m1 = m2, scattering only in the forward 

hemisphere (θ ≤ 90◦) is possible. 

(v) If m1 > m2, the maximum scattering angle is 

possible, θ1max, being given by 
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θ1max = sin−1 (m2/m1) 

We’ll prove some important relations relating the 

scattering angle of target mass m2 in Lab and COM frame. 

Look at the figure below. The scattering angles in Lab and 

COM frame has been drawn together in upper left figure (a), 

the COM frame alone in upper right (b) and the vector 

diagram of final state of target mass both in Lab and COM m2 

below 

(c). 

 

Figure 2.5: 
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We get by balancing the velocity vectors along y axis 

 

And by balancing the velocity vectors along x axis 

 
Divide first equation by second 

 

From equations (2.1), (2.2) , (2.3) and (2.4) we easily see 

that the magnitude of velocity of COM frame and the velocity 

of m2 after the collision in COM frame are equal, i.e 

  (2.8) 

Hence 

 = cot  (2.9) 

We may write this as 

  (2.10) 

Thus 
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 Θ) (2.11) 

This is an important result. In the special case of m1 = m2, 

we already know 

 
Combining with (2.11) we get 

 ; when m1 = m2 (2.12) 

This result we have proved before. 

2.2.1 Kinetic energies in the Lab and COM frame 

KE in lab frame 

 

KE in COM frame 

 

Using equation (2.4) we have 
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This result shows that the initial kinetic energy in the COM 

system Tc is always a fraction m2/(m1 + m2) < 1 of the initial 

LAB energy. For the final COM energies, we find 

 
and 

 

The ratio of KE of m1 before and after collision 

 

Using cosine law in figure 2.4 

 

Hence 

 

We already know 
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  and  

We also know  Using this we get 

 
and using (2.5) 

 

So that 

 

Doing the substitutions and some algebra (do yourself) 

we get 

 

This simplifies to 

 cosΘ) (2.13) 

This is the ratio of the KE of the projectile particle m1 before 

and after collision. Do each step in this formulation carefully. 
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There can be many problems which can be formed based on 

this discussion. If you are thinking why did we calculate the 

ration of KE of the projectile particle, I would like to mention 

that in many experiment we have the idea about the ratio of 

the KE of the projectile and we need to calculate at which 

angle the particle detector should be placed, i.e, calculate θ1. 

We will see in an example shortly. 

Prove yourself that 

  (2.14) 

 

Solution: The scattering angle Θ depends on the details of 

the interaction, but in general it can assume any value. If m1 < 

m2, it follows from equation (2.5) or the geometric 

construction in part (a) of the figure below that θ1 is 

unrestricted. 

However, the situation is quite different if m1 > m2. In this 

case θ1 is never greater than a certain angle θ1,max. As figure 

Example2.1: Whatisthemaximumanglethat θ 1 can 

attainforthecase V>v 0 
1 c ?Whatis θ 1 max for m 1  m 2 

and m 1 = m 2 ? 
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(b) shows, the maximum value of θ1 occurs when v10 is 

perpendicular to v10 c. 

Now look at the geometry of part (b) of the figure. You see 

sinθ1,max = v1c/V = m2/m1 

(don’t forget ) If 

 
and the maximum scattering angle in Lab frame approaches 

zero. 

 

Figure 2.6: 
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m 1 

m 2 
= 

sin(2 θ 2 + θ 1 ) 

sin θ 1 

Think on your familiar example, if m1/m2 < 1 as in (a), this 

is like a flow of small marbles hitting a big ball; the marbles 

scatter in all directions. On the other hand, if a moving big ball 

hits small marble, then  1 and the big ball do not 

deflect much. 

For m1 = m2 

 

so that 

θ1 = Θ/2 

Example 2.2: If a particle of mass m1 collides elastically 

with one of mass m2 at rest, and if m1 mass is scattered 

at an angle θ1 and the mass m2 recoils at an angle θ2 with 

respect to the line of motion of the incident particle, (see 

figure 2.3) then show that 

Solution: This can be easily done with the help of relation 

between angles in COM and Lab frame. As we know from 

equation (2.5) 
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Again we know from (2.11) 

Θ = π − 2θ2 

or sinΘ = sin(π − 2θ2) = sin2θ2 

and 

cosΘ = cos(π − 2θ2) = −cos2θ2 

Using these 

 
Doing cross multiplication and rearrangement 

 

hence 

 

Example 2.3: Particles of mass m1 elastically scatter from 

particles of mass m2 at rest. 

(a) At what LAB angle should a particle detector be setto 

detect particles that lose one-third of their momentum? 

(b) Over what range m1/m2 is this possible? 
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(c) Calculate the scattering angle for m1/m2 = 1 

Solution: (a) In the Lab frame given that 

 

Ratio of final and initial kinetic energy of particle m1 in Lab 

frame is 

 

This equation can be solved for cosθ, giving 

 

we have written  

We need θ1 here so use equation (2.5) 

 

This is the angle where the detector should be placed. We 

know the values of m1 and m2 before the experiment, so the 

calculation of θ1 can be done from the knowledge of the 

masses. 

(b) Because tan θ1 must be a real number, only 

values for m1/m2 where 2 − y ≥ 0 are possible. Therefore, 
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we write this as 

 

Now taking x = m1/m2 we write this equation as 

−5x2 + 26x − 5 ≥ 0 

If we make the inequality as equality, i.e, −5x2 +26x−5 = 0, 

we get 5 Hence 

 
(c) Substituting m1/m2 = 1 in the definition of y 

 

and substituting for y into tanθ1 gives θ1 = 48◦ 


