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1 Conservation of energy in three
dimension

The conservation of energy can be easily extended to three
dimension. Potential energy in three dimension becomes
dependent on the distance from the origin (radius vector) and
it is the integration of forces with the radius vector from a
reference point ro.

Zr
Ur) =- F(r0) - dr0 (1.1)

ro
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Force and displacement may not be in the same direction as
shown in the figure below. In two dimension case this
becomes Fr cos6. In three dimension we need to perform line
integral.

The integration of force give the difference of kinetic energy
as before.

| |
= —muv} — Emvg

2 (1.2)

1.1 Conservative force:

A force F acting on a particle is conservative if and only if it
satisfies two conditions: (i) F depends only on the particle’s
position r (and not on the velocity v, or the time ¢, or any other
variable ; that is, F = F(r) (ii) For any two points 1 and 2, the
work W(1 — 2) done by F is the same for all paths between 1
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and 2 A force F(r) to be conservative a necessary and
sufficient condition is to have the curl of the force to be zero.

Conservative force means the work done is path independent.
We will discuss these point in details. Let us first write the
force and potential energy relation in three dimension. Let us
consider a particle acted on by a conservative force F(r), with
corresponding potential energy U(r), and examine the work
done by F(r) in a small displacement from r to r + dr. We can
evaluate this work in two ways. On the one hand, it is, by
definition,

W(r —-r+dr)=F(r)-dr
(1.4

)
= Fxdx + Fydy + F,dz

for any small displacement dr with components (dx,dy,dz). On
the other hand, we have seen that the work W(r — r+dr) is
the same as (minus) the change in PE in the displacement:

W(r —>r+dr)=-dU=-[U(r +dr) - U(r)]

=-[U(x+dxy+dyz+dz) - U(xyz)]
(1.5

)

We know from the definition of derivative
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dU = U(x +dx,y +dy,z +dz) — U(zx,y, z)

oUu ou oUu
= —dr+ —dy+ —d
Ox v Oy yr 9z~ (1.6)

So the work done is
W —r+dr)=— a—Ud:U+ a—Udy+ a—Udz
Ox dy 0z (1.7)

The two expression of work in equation (1.4) and (1.7) are

equivalent. So we get

g W U
ox ‘ dy 0z (1.8)
Thatis, F is the vector whose three components are minus the
three partial derivatives of U with respect to x,y, and z. A

slightly more compact way to write this result is this:
LoUu  oUu | oU
= —X— -y —%

F Ox dy 0z (1.9)

From vector calculus we know that the gradient of a scalar
function is defined as

Lof .of Of
Vi=x—~+y+— +2—
dy 0z (1.10)
So the force is the gradient of the potential with a negative
sign
F=-VU (1.11)




Newtonian Mechanics: Advanced
This important relation gives us the force F in terms of
derivatives of U, just as the definition (1.1) gave U as an
integral of F. When a force F can be expressed in the form
(4.33), we say that F is derivable from a potential energy.
Thus, we have shown that any conservative force is derivable
from a potential energy.

Example 1.1: The potential energy of a certain particle is
U = Axy?+B sinCz, where A,B and C are constants.

What is the corresponding force?

Solution: To find F we have only to evaluate the three
partial derivatives. In doing this, you must remember that
dU/0x is found by differentiating with respect to x, treating y
and z as constant, and so on. Thus dU/dx = Ay?, and so on, and
the final result is

F=— (f{AyQ + y2Axy + zBC cos C’z)

Now we prove the statements about the conservative force
stated before. Suppose a force is conservative which
essentially means that the work done to move one point to
another point is path independent. Look at the figure below.
We do work to move particle from point A to B. Path I is the
path ACB, Path Il is the path ADFB. The work done is same for
both paths.
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Z Z
Wacs = F - dr = WaprB= F-.dr
ACB ADFB
Path |
C B
5 F
A
Path Ii
Figure 1.1:
So
Z Z
F-dr- F-dr=0
ACB ADFB

Now the sign of line integral changes when we reverses the
direction of integration.

Z Z

F-dr+ F-dr=0
ACB BFDA

hence |
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F-dr=0

So the work done in traveling the whole path once in a closed
cycle is ZERO.

From the stokes theorem we know

I 77
F-dr= (V< F)-nds

So if the line integral of a vector around a closed curve is zero
then the curl of the vector must be zero.

VxF=0

Finally we summaries our discussion of conservative force

If a force F is conservative in a region then all these
following condition satisfies. Any one of the following five
conditions implies all the others.

V x F = 0 at every point of the region.
Hg.dr = 0 around every simple closed curve in the region.

YF . d
F is conservative, that isz "“r is independent of the
path of integration from A to B. (The path must, of

course, lie entirely in the region.)

F - dr is an exact differential of a single valued function.




Newtonian Mechanics: Advanced

F =-V - U, where Uis a scalar potential.
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Example 1.2: A particle of mass m moves in the xy plane
so that its position vector is

r = acoswti + bsinwtj

where a,b and w are positive constants and a > b.
(a) Show that the particle moves in an ellipse. (b) Show

that the force acting on the particle is always directed
toward the origin.

(c) Find the kinetic energy at points A and B of the figure
as shown below.
(d)Find the work done by the force field in moving
theparticle from A to B.
(e) Show that the total work done by the field in movingthe
particle once around the ellipse is zero.

(f) Show that the force field is conservative.

(g) Find the potential energy at points A and B. (h) Find the
total energy of the particle and see that it is constant.
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Y
B
m
r
b
wt A
X
a
Figure 1.2:

Solution: (a) The position vector is
r =xi + yj = acoswti + bsinwtj

So x = acoswt,y = bsinwt
Then
(x/a)2+ (y/b)%=cos?2wt + sin2wt=1

the ellipse is so given by x2/a2 + y2/b%2= 1 (b) Assuming the
particle has constant mass m, the force acting on it is

dv d’r d?
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- - F=m_ = m
. 9, . 4 =m [(acoswt)i
a cos wtl — wbsin wt_]] + (bsinwt)j] dt
dtz  dt?

=m [—w2

= —mw?2[acoswti + bsinwtj] = -mw?r

which shows that the force is always directed toward the
origin.
(c) Velocity

Vv = dr/dt = —wasinwti + wbcoswtj

Kinetic energy

1 1 o .
§frrzf02 = im (w2a2 sin? wt + Ww2b? cos? wt)

wt = 1,sinwt = 0] = —mw?b?
Kinetic energy at A[ where cos ’ ) 2

1
wt =0,sinwt = 1] = §mw2a2

Kinetic energy at B[ where cos
(d) Work done
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B B B
f F.dr = / (—mwzr) cdr = —mwQ/ r-d
A A A

1 B 1 B
= ——mw2/ d(r -r) = —=mw’r?
= 1mwQCLQ — 1mwzb2 = 1mw2 (a2 — b2)
2 2 2 r
1mcu2 (a2 - b2) = 17fnw2a2 - l?’r1,u)2?)2
Work done = 2 2 2

= kinetic energy at A — kinetic energy at B

(e) We can find the work done by directly integrating the

/2w
= / [—mw?(acoswti + bsinwtj)| - [~wasinwti + wb cos wtj]
0

/2w
:/ mw? (az—bg) sin wt cos wtdt
0
1 2¢(.2 2 2 /2 2/ .2 2
= —mw” (a° — b“) sin” wt = —mw’ (a” —b
g (@ = P)sintat| = Jn? a2~ )

force also. See that at A and B,t = 0 and ¢ = m/2w respectively.
Then the Work done in moving the particle from 4 to

B

B
— [ P
A r
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Similarly for a complete circulation around the ellipse, t

goes from 0 to t = 2n/w.

27 fw
/ mw? (a2 — bQ) sin wt cos wtdt
Work done =/o

1 2w
= —mw? (a2 — bg) sin® wt

2 =0

0

You can do as you did in part (d) expect the integral goes
from one point to the same point, say A to A and you get zero.

A A A
/ F.dr = / (—mwzr) - dr = —mwQ/ r-d
A A A r

1 A 1 8
= ——mwz/ d(r-r) = —=mw’r?
2 B 2

A
1 1
= §mw2a2 — §mw2a2 =0

()

F=-mw?r = -mw?(xi + yj)
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We calculate the curl of force
i j k
V xF = ‘ d/0ox  0/0y 0/0z

—mw?r —mw?y 0

=1 [(%(0) — % (mwa)} +]j [% (—mwzx) - 0_,1:(0)
+k [6% (—mwgy) — 6% (—mw%)}
=0

As the curl of the force is zero, the force is conservative.
(g) Since the field is conservative there exists a potential
V such that
5 . 5 . ov., oV, oV
= —mw?ri — mwyj = —VV = ———i —

F ox 8y']_ 0z k
Then

dV/0x = mw?x, dV/dy =mw?y, 9dV/0z=0

from which, omitting the constant, we have
1 . 1 i 1 1 .
V = §mw2$2 + Emwaz = §mw2 (::32 + yz) = §mw2'r

2

which is the required potential.
(h) Kinetic energy at any point
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1 1
T = §mv2 = §mr2
1

=5m (w2a2 sin? wt 4 w?b* cos wt)
Potential energy at any point

1
V= §mw2r2

1

— §mw2 (a2 cos® wt + b® sin® wt)

Add and get
1
T+V = §mw2 <a2 + b2>

The energy depends only on the constants a and b so the
energy is constant.

Example 1.3: (a) Show that the force field F defined
by

F = <y2z?’ — 6xz2) i+ 2zy2’j + (3.’1:3;2,32 — 6:1:2,2) k

is a conservative force field.

(b) Find a potential corresponding to the force.

Solution: (a) The force field F is conservative if and only
ifcurlF=VxF=0
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i i k
VxF= d/0x d/0y 0/0z

Y223 — 6x2? 2ry?

N A I R S 2
_llay (Sxyz 6 z) 3 (233y2 )]

3wy 2 — 6222

+j [% (3;223 - 63:22) 5 (31 Y222 6:1;22)}

(b) As we know the force field F is conservative if and only
if there exists a scalar function or potential V (x,),z) such that
F = -gradV=-VV.

ov., oV, oV
=-VV=—-i-— j —
F oz ay‘] 0z k

= (y2° — 6w2”) i+ 20y2’j + (3uy’2” — 62”2

Hence if F is conservative we must be able to find V such
that

0V/0x = 6xz2 - y273
dV/dy = -2xyz3




Newtonian Mechanics: Advanced

0V/0z = 6x2z — 3xy?z2

To find the potential we need to integrate each component

of the force and omit the common terns.
oV

Integrate O with respect to x keeping y and z constant.
Then

V = 3x2z2 - xy2z3 + g1(),2)
where g1(),z) is a function of y and z
oV
Similarly integrate 0¥ with respect to y (keeping x and z
constant), we have

V=-xy2z3 + g2(x,2)

av
Then integrate =~ ___ with respect to z (keeping x and y con-

0z
stant)
The trick is to add all three V 0s and take one term only

once. 3x2z%and -xy2z3 both the terms have appeared twice.

We take both the term only one time. So
the required potential is

V =3x2z2-xy?z3+ ¢
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2 Collision in 2D in Center of Mass
frame

2.1 Formulation of the problem

Consider two particles of masses m1and mz with velocities vi
and vz respectively. The center of mass velocity Vis

mivy + Maovy

VvV my + ms

As shown in the part (a) of the figure below, V lies on the line
joining vi1and v2 The velocities in the COM system are
Vie=vi-V
my

= — (V] — V¢
ml—l—mg( : 2)

Vac V=V,—V,
V2 v VTC V2
Vi Vi
(@) (b)

Figure2.1:
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and
v2c=v2-V
—71
e (Vl - VQ)
mi + ms

vicand vzclie back to back along the relative velocity vector v

=v1 - vzas shown in the part (b) of the figure.

The momenta in the COM system are

le = M1Vie
myms
= — (Vi1 — V2)
p my -+ Mo
=uvp
2c = M2V
—m1ms
= — (V1 — V2)
mi + ms
=—-uv
Here u = mimz/(m1+ mz) is the reduced mass of the system,
the natural unit of mass in a two-particle system. The total
momentum in the COM system is zero. The total momentum

in the Lab frame is

mivi+ mzvz = (m1+ mz)V
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and since total momentum is conserved in any collision, V is
constant. We can use this result to help visualize the velocity
vectors before and after the collision.

Now look at the figure below. Part ( a ) visualizes the path
of two colliding particles before and after the collision in the
lab frame. Part ( b ) shows the initial velocities in the Lab and
COM systems. All the vectors lie in the same plane, and vicand
v2c must be in opposite direction as the total momentum in
the C system is zero. After the collision, as shown in part ( ¢ ),
the velocities in the COM system are again in opposite
direction. Part (c) also shows the final velocities in the lab
system. Note that the plane of part (c) is not necessarily the
plane of part (a)

Figure 2.2:

We will derive the mathematical formulation for the
elastic collision and leave the inelastic collision as the
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treatment will be complicated. Conservation of energy

applied to the COM system gives, for elastic collisions,

2 2 2 2
—M VT, + =M. = =M Uy, + =Mots.,
2 le 2 2c 2 le 2 2c

Total momentum is zero in the C system. We therefore have

mivic— mzv2c= 0 mivioc

- m2v2oc=0

. . .. !
Using momentum conservation to eliminate vzc and¥2c from
the energy equation gives

or
Ule = Vp, (2.1)
Similarly,
V2e = Vae (2.2)

In an elastic collision, the speed of each particle in the COM
system is the same before and after the collision; the velocity
vectors simply rotate in the scattering plane.
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Now consider one of the particles, m: is initially at rest in
the laboratory. So vz = 0. This case is important as it happens

in many real experiment.

In our earlier discussion of velocities before the collision,

substitute v2 = 0.

ma
V mp+mo
ma

le=V]—V=———vV]

v my + mo
my

2= —V =——TT—"-"V]

\'4 my + mo

The situation is explained in the figure below. Here the
trajectories after the collision in the COM and Lab systems are
shown. You see that vi® makes angle 61, and v20 makes angle
62 in Lab frame. In the COM frame the velocity vectors rotates

with angle ® which is called the scattering angle.

Because these angles are in L, they are in principle
measurable in the lab. The velocity diagrams can be used to
relate 61 and 02 to the scattering angle ©, as we shall do just

now
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Lab com

Figure2.3:

2.2 Elastic scattering when target particle at

rest

Now consider the elastic scattering of a particle of mass m1

and velocity vi from a second particle of mass mz at rest.

The scattering angle © in the COM system is unrestricted,
but the conservation laws impose limitations on the
laboratory angles, as we now show. The center of mass
velocity has magnitude
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mity
V= ————
my -+ ms (2.3)

The velocity of COM is parallel to vi. The initial velocities in
the COM system are

. mo
— mi
e _ml + sz1
\ Y
(2.4)
\ Y

The mass m is scattered through angle 0 in the COM system
as shown in figure above. This essentially means that the
mass m1 deviates an angle O from its original direction in the
COM

frame.

Now look at the diagram below. This is velocity diagram of
the collision. Look at the figure 2.3 first. You must see that the
initial direction of m1 is same both in Lab and COM frame
(although the magnitude of velocities are different) as well as
the velocity of COM frame which is V. 81 is the angle between
the initial and final direction of mass m1 in the Lab frame. © is
the angle between the initial and final direction of mass m1in
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the COM frame. As initial direction of mi is same both in Lab
and COM frame we draw the vector direction of V, v1, vicalong
same line.

Figure 2.4:

Now it should be clear from the velocity addition rule that
v sinf = v}, sin ©

and
! o '
vicost =V + v,

Hence we write
[
v;,.5in ©
V +v].cos©

tanf, =

: L o
since the scattering is elastic,V1 = V1, Hence
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V1. 5in ©

V 4+ vy.cos©
sin ©

(V/v1e) + cos©

tan 6 =

From (2.3) and 2.4 we get V/vic= m1/ma. So,
sin ©

tanf; =
o (mqy/ms) + cos © (2.5)

You can easily check few important results

(i) 01 =0, m <K<my (2.6)
and
S}
ii) 6, =—, 1= M
(i) 6i=7, m=m (2.7)
(iii) If m1 < my, all scattering angles for mi in LS are
possible.
(iv) If mi = my scattering only in the forward

hemisphere (0 <90 ") is possible.

(v) If mi > my, the maximum scattering angle is

possible, O1max, being given by
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O1max = sin-1 (mz/m1)

We'll prove some important relations relating the
scattering angle of target mass m: in Lab and COM frame.
Look at the figure below. The scattering angles in Lab and
COM frame has been drawn together in upper left figure (a),
the COM frame alone in upper right (b) and the vector
diagram of final state of target mass both in Lab and COM m:
below

(c).

Lab com

Figure 2.5:
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We get by balancing the velocity vectors along y axis
vh sin By = vl sin O

And by balancing the velocity vectors along x axis
vhcosly =V — vy, cos ©
Divide first equation by second
sin ©
tan Oy = <

—— —cos O
Uae

From equations (2.1), (2.2), (2.3) and (2.4) we easily see
that the magnitude of velocity of COM frame and the velocity
of my after the collision in COM frame are equal, i.e

V=, (2.8)
Hence
tan fy — sin © 9
1 — cos ©=cot 2 (2.9)
We may write this as
(3-3)
tanfy, = tan [ — — —
22 (2.10)

Thus
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1
92:—(7T—@) — 292:(7(—

9 0) (2.11)

This is an important result. In the special case of m1 = my,
we already know

my, = Mo —— 61_% — O = 260,

Combining with (2.11) we get
j

Iy
[

0, + 0y =
1+92="9. when mi=m: (2.12)

This result we have proved before.

2.2.1 Kinetic energies in the Lab and COM frame

KE in lab frame
1
Tl = 57711’2)%

KE in COM frame

Ty = (mlyi: + m’QU%(:)

M| =

Using equation (2.4) we have
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1 mqms ma
= —v% = —T
mip -+ mo

e ™ §m1 =+ Mo
This result shows that the initial kinetic energy in the COM

system T.is always a fraction mz/(m1+ mz) < 1 of the initial

LAB energy. For the final COM energies, we find
1 1 2 J 2
T), = —mpt = -my o v? = T2 Ty
2 2 my + mo my + ma

(&

and
1 1 my 2 mims
Ty, = —mgfv'% = =My (—) V= —= T
e e 9 my + mo (my + ms)?

The ratio of KE of m1 before and after collision
12 2

U 1
I gmef of
T %mw% v?

Using cosine law in figure 2.4

VE =0 + V= 20V cos b

U 12 2 2 /
R %4 vV )
T——Q——Q——Q—FQ—QCOle

1 U1 U1 U1 U1

Hence

We already know
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VY, msy 1% my

U1 mp+me and Vi M1+ mo__

We also know V1. Sin © = visinf, Using this we get
4 n@\ V
2,01—2 cos ) = 2 (’U’if%) - — cos b
(5 sint)y /v
and using (2.5)

sin®@cosf; sin© my

_ = =cosO® + —

sin 64 tan ¢, mo

So that
!

v,V 2mimes my
2 12 cost) = ——— [ cos O + —
vy (my + mo) msy

Doing the substitutions and some algebra (do yourself)
we get

T/ m 2 m 2 2mym m
n_ (_2> _(_1) 2 (Cos@ N ;1)
T my + Mo my + me (my + ma) mo
This simplifies to

7 | 2mymeo

I (my + my)” cos0) (2.13)

This is the ratio of the KE of the projectile particle m1 before
and after collision. Do each step in this formulation carefully.
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There can be many problems which can be formed based on
this discussion. If you are thinking why did we calculate the
ration of KE of the projectile particle, I would like to mention
that in many experiment we have the idea about the ratio of
the KE of the projectile and we need to calculate at which
angle the particle detector should be placed, i.e, calculate 6.

We will see in an example shortly.

Prove yourself that

T m? ma\ i
1= Lz[cos == \/(2> — sin® 6,]?
Ty (my +mo) mi (2.14)

Example2.1: Whatisthemaximumanglethat 6 can

. C .
attainforthecase V>v {.?Whatis 6Oimax formi1  m2
and m1 = my?

Solution: The scattering angle ® depends on the details of
the interaction, but in general it can assume any value. If m1 <
my, it follows from equation (2.5) or the geometric
construction in part (a) of the figure below that 6 is
unrestricted.

However, the situation is quite different if m1 > mo. In this

case 61is never greater than a certain angle 01,max As figure
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(b) shows, the maximum value of 61 occurs when v10 is
perpendicular to vi..

Now look at the geometry of part (b) of the figure. You see

sin@1,max = vie/V = mz/m1

(don’t forget“ic = Vi) If

my 2> My, gl.max ~ m2/mf1
and the maximum scattering angle in Lab frame approaches
Zero.

Increasing ©

Figure 2.6:
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Think on your familiar example, if mi/m2 < 1 as in (a), this

is like a flow of small marbles hitting a big ball; the marbles

scatter in all directions. On the other hand, if a moving big ball

hits small marble, then 71/™2 >>1 and the big ball do not
deflect much.

For mi=m»

sin ©
tanfy = ——— = tan(©/2
an 1+ cos® an(©/2)

so that

Gr=-0,+2
Example 2.2: If a particle of rilass m collides elastically
with one of mass mz at rest, and if m; mass is scattered
at an angle 61 and the mass mzrecoils at an angle 6, with
respect to the line of motion of the incident particle, (see

figure 2.3) then show that
mi _ sin(26: + 61)

mo sin &1

Solution: This can be easily done with the help of relation
between angles in COM and Lab frame. As we know from
equation (2.5)

sin ©

(my/ms) + cos ©

tanf, =
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Again we know from (2.11)
O=m-26

or sin® = sin(m - 262) = sin26;

and
cos® = cos(m - 262) = —c0s26;
Using these
tan 0 sin ©
anf, =
"7 (mi/ms) + cos ©
sind, sin 20,

cosl;  (my/ms) — cos 20,
Doing cross multiplication and rearrangement

m
—Lsin 61 = sin #y cos 2¢ + cos B, sin 2605 = sin(f; + 269)
m2

hence
my  sin(20y + 6;)

mo sin 6,

Example 2.3: Particles of mass m elastically scatter from
particles of mass m; at rest.

(a) At what LAB angle should a particle detector be settg
detect particles that lose one-third of their momentum?

(b) Over what range m1/mz is this possible?
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(c) Calculate the scattering angle for miy/m;=1

Solution: (a) In the Lab frame given that
2 2

! !
miv; = gmlful — v = §U1

Ratio of final and initial kinetic energy of particle m1in Lab

frame is

T im? 2 2\ 2 2mim

o2 (2 =1 "2 (1 —cos®)
( 2

=7 7
T §m1v% vy 3 my + mo)

This equation can be solved for cos6, giving

5 (my + ms)?
cos© =1— (1 + ) =1—y
187’?’2,1?712
~ 5(my + ms)?
we have written 18myms

We need 61 here so use equation (2.5)

sin © /2y — 1y?

cos © + my/mo T 1 y + my/ms

tan 9] ==

This is the angle where the detector should be placed. We
know the values of m1 and m: before the experiment, so the
calculation of 61 can be done from the knowledge of the
masses.

(b) Because tan 61 must be a real number, only

values for mi/mzwhere 2 — y 2 0 are possible. Therefore,
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2
5 (my + mo)
18myime

2 —

>0
we write this as
5 (:2)2 +26 (%) —5>0
Now taking x = m1/m; we write this equation as
-5x2+26x-520
If we make the inequality as equality, i.e, -5x2+26x-5 =0,

1
we get ¥~ 5’5 Hence

[

my
g_
5 ms

(c)Substituting m1/mz =1 in the definition of y

~ 5(my + ms)? B 5 (;::1 + 1)

<9

18mymy 18my /my
5141 _ 10
18 9

and substituting for y into tan6: gives 61 = 48"




