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1 Quantum Statistical Mechanics

In this section, statistical mechanics of N identical quantum

particles will be formulated. For simplicity, a gas of non-

interacting N particles is considered. Since the particles are

non-interacting, the Hamiltonian of the system is just the

sum of N individual Hamiltonian and it is given by

Ĥ(q,p) =
N∑
i=1

Ĥi (qi, pi) (1.1)

where (qi, pi) are the coordinate and momentum of the

i th particle, Ĥi is the Hamiltonian operator.

A stationary system of N particles in a volume V then

can be in any one of the quantum states determined by the

solutions of the time independent Schrödinger equation

ĤψE(q) = EψE(q) (1.2)

where E is the eigenvalue of the Hamiltonian and ψE is

the corresponding eigenfunction. The solution of the above
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Schrödinger equation of N non-interacting particles can be

written as

ψE(q) =
N∏
i=1

φεi (qi) , with E =
N∑
i=1

εi (1.3)

and

Ĥiφεi (qi) = εiφεi (qi) (1.4)

where φi is the eigenfunction of the single particle Hamilto-

nian Ĥi with eigenvalue εi. Each single particle wave func-

tion φi is always a linear combination of a set of orthonormal

basis functions {ϕj} , φi =
∑

j cijϕj. If there are ni particles

in an eigenstate εi, then the distribution should satisfy

∑
i

ni = N and
∑
i

niεi = E (1.5)

jahir@physicsguide.in 5 Physicsguide



P
hy

si
cs

gu
id

e

©Sk Jahiruddin, 2020 Quantum Stat Mech

2 Symmetry of wave functions and

particle statistics:

For simplicity, first consider a two-particle system described

by ψ(a, b). If the particle a described by φan when it is in the

n th state of energy En and the particle b described by φbk
when it is in the k th state of energy Ek, then the wave

function for the combined two particle system is given by

ψ(a, b) = φanφ
b
k with E = En + Ek

where E is the energy of the system. If the two particles

are exchanged so that a in the k th state and b in the n th

state, the corresponding wave function is

ψ(a, b) = φbnφ
a
k with E = En + Ek

since both the states corresponds to the same energy

value, the states are then degenerate. The most general

wave function is the linear combinations of these two wave

functions. There are two possible combinations and they

are given by

jahir@physicsguide.in 6 Physicsguide
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(i)ψ(a, b) =
1√
2!

[
φanφ

b
k + φbnφ

a
k

]
Symmetric (2.1)

and

(ii)ψ(a, b) =
1√
2!

[
φanφ

b
k − φbnφak

]
=

1√
2!

∣∣∣∣∣ φan φbn
φak φbk

∣∣∣∣∣ Anti-symmetric

(2.2)

If a and b are interchanged, (i) remains unchanged and

it is called symmetric wave function, (ii) the absolute vale

remains unchanged but reverses the sign and it is called

anti-symmetric wave function. However, the wave functions

φanφ
b
k and φbnφ

a
k individually are neither symmetric nor anti-

symmetric. The interchange of the particles leads to differ-

ent microstates which means the particles are distinguish-

able as classical particles.

Now, one could write the wave functions for N particles

{a1, a2, · · · , aN} with ai particle in the ni th state. The

corresponding wave functions are

jahir@physicsguide.in 7 Physicsguide
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ψ (a1, a2, · · · , aN) =
N∏
i=1

φaini Product (2.3)

ψ (a1, a2, · · · , aN) =
1√
N !

∑ N∏
i=1

φaini Symmetric (2.4)

ψ (a1, a2, · · · , aN) =
1√
N !

∣∣∣∣∣∣∣∣∣
φa1n1 φa2n1 · · · φ

aN
n1

φa1n2 φa2n2 · · · φ
aN
n2

...
... . . . ...

φa1nN φa2nN · · · φ
aN
nN

∣∣∣∣∣∣∣∣∣
Anti-symmetric

(2.5)

The particles described by these three wave functions

obey different statistics.

(i) The particles described by the product function cor-

respond to different microstate by interchanging particles

between states. These are then distinguishable particles and

obey Maxwell-Boltzmann statistics.

jahir@physicsguide.in 8 Physicsguide
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(ii) In the case of symmetric wave functions, interchang-

ing of particles does not generate a new microstate. Thus,

the particles are indistinguishable. Also, all the particles

in a single state corresponds to a nonvanishing wave func-

tion. That means accumulation of all the particles in a

single state is possible. These particles obey Bose-Einstein

statistics and are called bosons.

(iii) For the anti-symmetric wave function, if the two

particles are exchanged, the two columns of the determinant

are exchanged and leads to the same wave function with a

different sign. Thus, the particles are again indistinguish-

able. However, if any two particles are in one state then the

corresponding rows of the determinant are the same and the

wave function vanishes. This means that a state cannot be

occupied by more than one particle. This is known as Pauli

principle. These particles obey Fermi-Dirac statistics and

they are called fermions.

jahir@physicsguide.in 9 Physicsguide
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3 Quantum distribution functions

from grand canonical ensemble

Consider an ideal gas of N identical particles. Let s repre-

sents the single particle state and S denotes the state of the

whole system. At the state S, the total energy ES and the

number of particles N are given by

ES =
∑
s

nsεs and N =
∑
s

ns

The distribution functions can be calculated by obtain-

ing the appropriate partition function.

3.1 MB statistics

We consider the particles are distinguishable in formulation

of MB statistics. If they are indistinguishable like classical

ideal gas molecules then we divide the partition function by

N !. The canonical partition function is given by

Z =
∑
S

e−βES =
∑
S

e−β
∑
s nsεs (3.1)

jahir@physicsguide.in 10 Physicsguide
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where the sum is all states S. All states is the collection

of states with all possible values of ns. This, the partition

function can be written as

Z =
∑
{si}

e−β(εs1+εs2+···+εsN ) (3.2)

where the sum is now over the all possible states of individ-

ual particles. The summation in the partition function can

be carried out in the following manner.

Z =
∑

s1,s2··· ,sN

e−βεs1e−βεs2 ...e
−βεsN

=

[∑
s1

e−βεs1

][∑
s2

e−βεs2

]
· · ·

[∑
sN

e−βεsN

]

=

[∑
si

e−βεsi

]N (3.3)

and

lnZ = N ln

(∑
si

e−βεsi

)
(3.4)

The mean number of particles in state s is then given by

jahir@physicsguide.in 11 Physicsguide
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〈ns〉MB = −1

β

∂ lnZ

∂εs
=

Ne−βεs∑
s e
−βεs

(3.5)

This is the Maxwell-Boltzmann distribution as already

obtained classical statistical mechanics.

3.2 BE statistics:

The grand canonical partition function Z of N indistin-

guishable bosons is given by

Z =
∑
s

e−β(n1ε1+n2ε2+··· )+µβ(n1+n2+··· ) (3.6)

where the sum is over all possible single particle states s.

The number of particles ni in each state i could be 0, 1, 2, · · ·
subject to the condition

∑
ni = N. Therefore,

Z =

(∑
n1

e−β(ε1−µ)n1

)(∑
n2

e−β(ε2−µ)n2

)
· · · (3.7)

jahir@physicsguide.in 12 Physicsguide
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Now since (geometric progression)

∞∑
n=0

e−β(ε1−µ)n =
1

1− e−β(ε−µ)
(3.8)

so the partition function then can be written as

Z =

(
1

1− e−β(ε1−µ)

)(
1

1− e−β(ε2−µ)

)
· · · (3.9)

and so

lnZ = −
∑
s

ln
(

1− e−β(εs−µ)
)

(3.10)

The number of particles in an grand canonical ensemble is

given by

N =
1

β

∂ lnZ
∂µ

= −1

β

∂

∂µ

{∑
s

ln
(

1− e−β(εs−µ)
)}

=
∑
s

〈ns〉

(3.11)

Thus the average number of molecules in the s level is

〈ns〉BE = −1

β

∂

∂µ

{
ln
(

1− e−β(εs−µ)
)}

=
e−β(εs−µ)

1− e−β(εs−µ)
=

1

eβ(εs−µ) − 1

(3.12)

This is Bose-Einstein distribution where always µ < εs, oth-

erwise 〈ns〉 could be negative.

jahir@physicsguide.in 13 Physicsguide
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3.3 FD statistics:

The fermions have only two states, ns = 0 or 1. Thus, in the

grand canonical partition function for N indistinguishable

fermions

Z =

(∑
n1

e−β(ε1−µ)n1

)(∑
n2

e−β(ε2−µ)n2

)
· · · (3.13)

there will be only two particles in each sum ns = 0 or 1.

So

Z =
(

1 + eβ(µ−ε1)
)(

1 + eβ(µ−ε2)
)
· · · (3.14)

and

lnZ =
∑
s

ln
(

1 + eβ(µ−εs)
)

(3.15)

The number of particles is given by

N =
1

β

∂ lnZ
∂µ

=
∑
s

eβ(µ−εs)

1 + eβ(µ−εs)
=
∑
s

〈ns〉 (3.16)

Thus the average number of molecules in the s level is

〈ns〉FD =
1

eβ(εs−µ) + 1
(3.17)

jahir@physicsguide.in 14 Physicsguide
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3.4 Boltzmann limit of Boson and Fermion

gasses:

The Bose-Einstein (BE) and Fermi-Dirac (FD) distributions

are given by

〈ns〉 =
1

eβ(εs−µ) ± 1

where + corresponds to FD and - corresponds to BE distri-

bution. Suppose that,

e−βµ � 1 that is eβ(εs−µ) � 1

In this case,

〈ns〉 ≈
1

eβ(εs−µ)
= eβµe−βεs

and∑
〈ns〉 = N = eβµ

∑
s

e−βεs or eβµ =
N∑
s e
−βεs

Thus the distribution becomes

〈ns〉 =
Ne−βεs∑
s e
−βεs

jahir@physicsguide.in 15 Physicsguide
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as that of classical Maxwell-Boltzmann distribution. Thus

the quantum statistics will behave like a classical statistics

in the limit of

e−βµ � 1

where µ is chemical potential of an ideal gas ofN molecules

in a volume V at temperature T . since the partition func-

tion of an ideal gas of N molecules in a volume V at tem-

perature T is given by

Z(N, V, T ) =
1

N !

[
V

h3
(2mπkBT )3/2

]N

and correspondingly the free energy will be

F = −kBT lnZ = −NkBT ln
V

N

(
2mπkBT

h2

)3/2

−NkBT

The chemical potential of the ideal gas is then given by

µ =

(
∂F

∂N

)
V,T

= −kBT ln

[(
2πmkBT

h2

)3/2
V

N

]
Thus one has,(

2πmkBT

h2

)3/2
V

N
� 1 =⇒ 1

λ3
V

N
� 1 (3.18)

jahir@physicsguide.in 16 Physicsguide
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where λ = h/
√

2πmkBT is the thermal wavelength. The

above condition will be then satisfied only for the values of

the physical parameters T →∞ and ρ→ 0. This is known

as the classical limit of the quantum gas.

3.5 Equation of state of a quantum Ideal

Gas

Consider a gas of N non-interacting identical quantum par-

ticles enclosed in a volume V . The distribution function for

the particles of the gas is given by

〈n〉 =
1

eβ(ε−µ) ± 1

where + sign corresponds to FD and - sign corresponds to

BE distribution. In order to obtain the equation of state,

one needs to establish a relationship between the pressure P ,

volume V and energy E. The mean energy E of the system

is given by

E =

∫ ∞
0

εg(ε)〈n〉dε (3.19)

jahir@physicsguide.in 17 Physicsguide
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where g(ε) is the density of states between energy ε and

ε+dε. The number of states g(p) between momentum p and

p+ dp is

g(p)dp =
1

h3
d3qd3p =

V

h3
d3p =

V

h3
4πp2dp (3.20)

since p2 = 2mε, the number of states g(ε) between energy

ε and ε+ dε is then

g(ε)dε =
2πV

h3
(2m)3/2ε1/2dε (3.21)

If the particles have spin we must multiply the spin de-

generacy with the number of states. We will discuss more

on DOS in the next section.

The energy E of the system is then given by

E =
2πV

h3
(2m)3/2

∫ ∞
0

ε3/2

eβ(ε−µ) ± 1
dε (3.22)

The grand canonical partition function of the gas is given

by

jahir@physicsguide.in 18 Physicsguide
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q = lnZ =

∫ ∞
0

ln
(

1± e−β(ε−µ)
)±1

g(ε)dε (3.23)

where + sign corresponds to FD and − sign corresponds

to BE distribution as before. The pressure P of the gas is

then

P = kBTq/V =
kBT

V

∫ ∞
0

ln
(

1± e−β(ε−µ)
)±1

g(ε)dε

or

P = kBT
2π

h3
(2m)3/2

∫ ∞
0

ln
(

1± e−β(ε−µ)
)±1

ε1/2dε

Integrating by parts, you can get the pressure as

P =
2

3V

(
2πV

h3
(2m)3/2

∫ ∞
0

ε3/2

eβ(ε−µ) ± 1
dε

)
=

2

3

E

V
(3.24)

So the equation of state

PV =
2

3
E (3.25)

You see that the equation of state is then independent

of whether the particles follow FD or BE statistics

jahir@physicsguide.in 19 Physicsguide
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4 Density matrix and average val-

ues

We will learn through problems. Suppose there are N.particles

fixed in space. The Hamiltonian of the system is

system is, H = K

 0 1 0

1 0 1

0 1 0


Calculate A, S and Cv

Solution:

(1) We take out the possible energies by calculating the

eigenvalues n.

(2) Use that energies to calculate Partition Function.

(3) Calculate required quantities using the Partition Func-

tion.

H = K

 0 1 0

1 0 1

0 1 0


Eigan values = 0,+

√
2K,−

√
2K

jahir@physicsguide.in 20 Physicsguide
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Single particle and total Partition function is then

Z1 = e−β·0 + e−β
√
2k + eβ

√
2k

= 1 + e−β
√
2k + eβ

√
2k

Z = ZN
1

Calculate the asked quantities.

Now

Given another obsovable, A =

 1 0 0

0 2 3

0 3 4


Find 〈A〉 in the same basis. (in which the Hamiltonian is

diagonalized)

Solution:

Avg. Quantities: − 〈f(ε)〉 =

∫
f(ε)e−βεdε∫
e−βεdε

: Continuous

〈f(ε)〉 =

∑
i fie

−βεi∑
i e
−βεi

: Discrete

jahir@physicsguide.in 21 Physicsguide
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Average value of an observable is

〈A〉 =
Tr
(
Ae−βH

)
Tr (e−βH)

(4.1)

We know from function of a matrix

Λ =

 1 0 0

0 2 0

0 0 2

 =⇒ eA =

 e1 0 0

0 e2 0

0 0 e3



In our problem, H =

 0 0 0

0
√

2k 0

0 0 −
√

2k



e−βH =

 1 0 0

0 e−β
√
2k 0

0 0 eβ
√
2k


Now transform the A matrix by similarity transformation

with the S matrix which diagonalizes the Hamiltonian (formed

my writing the eigenvectors of the H matrix columnwise))

A′ = S−1AS

Then calculate the Trace.

jahir@physicsguide.in 22 Physicsguide
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5 Density of states calculation

In different dimensions start the DOS calculation with these

basic formulas

1D =⇒
(
L

2π

)∫
dk (5.1)

2D =⇒
(
L

2π

)2 ∫
2πkdk (5.2)

3D =⇒
(
L

2π

)3 ∫
4πk2dk (5.3)

d D =⇒
(
L

2π

)d ∫
2πd/2

Γ(d/2)
kd−1dk (5.4)

There are relations between energy and momentum E =

E(k), which is sometimes also written as ω = ω(k). Use

these dispersion relations to get the DOS as a function of

energy / frequency / momentum.
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5.1 DOS of 3D photon gas

Dispersion relation of photon gas

ε = hν = ~ck (5.5)

Hence DOS

2

(
L

2π

)3 ∫
4π
( ε
~c

)2 dε
~c

(5.6)

5.2 DOS of 3D phonon: Debye model

Dispersion relation

ω = vk (5.7)

There are three modes - One for longitudinal Two for trans-

verse. Velocities may be different. Let’s say vl for longitu-

dinal and vt for transverse. So DOS(
L

2π

)3 ∫
4πk2dk ⇒

(
L

2π

)3 ∫
4π

(
ω2

v2l

dω

vl
+ 2

ω2

v2t

dω

vt

)
=

(
L

2π

)3

4π

(
1

v3l
+

2

v3t

)∫
ω2dω

(5.8)
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5.3 DOS of 3D gas

Dispersion relation

ε =
~2k2

2m
(5.9)

Hence

k =

√
2mε

~2
→ dk =

√
2m

~
· ε−1/2dε

So DOS(
L

2π

)3 ∫
4πk2dk

⇒ (2j + 1) ·
(
L

2π

)3 ∫
4π

2mε

~2

√
2m

~
· ε−1/2dε

(5.10)

The multiplication of (2j+1) is because of spin degeneracy.

The DOS is simplified as for the electrons j = 1/2

V

2π2

(
2m

~2

)3/2 ∫
ε1/2dε (5.11)

5.4 DOS of 3D relativistic system

Energy momentum relation

E =
√

~2k2c2 +m2c4 (5.12)
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Hence

g(E) =
V E

2π2~3c3
√
E2 −m2c4 (5.13)

For massless particles

g(E) =
V E2

2π2~3c3
(5.14)

5.5 General DOS for d dimensional system

with general dispersion relation: ε =

cks

Dispersion relation

ε = cks ⇒ k =
(ε
c

)1/s
⇒ dk =

1

s

(ε
c

) 1
s−1

dε

(5.15)

So DOS(
L

2π

)d ∫
2πd/2

Γ(d/2)
kd−1dk

⇒ (2j + 1)

(
L

2π

)d ∫
2πd/2

Γ(d/2)

(ε
c

)(d−1)/s 1

s

(ε
c

) 1
s−1

dε

= (2j + 1)A

∫
ε
d
s−1dε

(5.16)
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Where all the constants has been accomodated under

A. Most of the time it is sufficient to remember the power:

ε
d
s−1
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