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1 Thermodynamic Potentials

By the second law of thermodynamics, an isolated system

during a spontaneous change reaches an equilibrium state

characterized by maximum entropy:

dS = 0, S = Smax (1.1)

On the other hand, it is known from mechanics, electro-

dynamics and quantum mechanics that a system which is

not isolated minimizes its energy. An interacting thermo-

dynamic system always exchanges heat or perform work on

the surroundings during a spontaneous change to minimize

its internal energy. However, the entropy of the system plus

the surroundings, which could be thought as a whole an

isolated system, always increases. Thus, a non-isolated sys-

tem at constant entropy always leads to a state of minimum

energy.

jahir@physicsguide.in 4 Physicsguide
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1.1 Entropy as a thermodynamic poten-

tial:

Both entropy and the internal energy are state functions. If

they are known as function of state variables of an isolated

system then all other thermodynamic quantities are com-

pletely known. Consider the internal energy E = E(S, V,N)

then, the differential form of energy is

dE = TdS − PdV + µdN (1.2)

So, the temperature and pressure are known as functions of

other state variables

T =

(
∂E

∂S

)
V,N

, −P =

(
∂E

∂V

)
S,N

, µ =

(
∂E

∂N

)
S,V

(1.3)

Similarly, consider the entropy S = S(E,N, V ), then

TdS = dE + PdV − µdN (1.4)

and the temperature and pressure can be found as

1

T
=

(
∂S

∂E

)
V,N

, P = T

(
∂S

∂V

)
E,N

, µ = −T
(
∂S

∂N

)
E,V

(1.5)
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The entropy and the internal energy then can be calculated

as functions of the state variables form the equation of state.

Since the equilibrium state of the system is given by a maxi-

mum of the entropy as a function of (E, V ), it gives informa-

tion about the most stable equilibrium state of the system

as potential energy does in mechanics.

As the difference in potential energy defines the direc-

tion of a natural process in mechanics, the entropy differ-

ence determines the direction of a spontaneous change in

an isolated system. Thus, the entropy can be called as a

thermodynamic potential.

1.2 Enthalpy as a thermodynamic poten-

tial:

The enthalpy of a system is defined as

H = E + PV (1.6)

the differential form is

dH = dE +PdV +V dP =⇒ dH = TdS +V dP +µdN

(1.7)

jahir@physicsguide.in 6 Physicsguide
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Knowing the enthalpy H = H(S, P,N), the state variables

can be calculated as

T =

(
∂H

∂S

)
P,N

, V =

(
∂H

∂P

)
S,N

, µ =

(
∂H

∂N

)
S,P

(1.8)

Consider an isolated system at constant pressure. Process

at constant pressure are of special interest in chemistry since

most of the chemical reactions occur under constant atmo-

spheric pressure. In an isolated-isobaric system, δQ = 0 and

P is constant, thus

dE + PdV = 0 =⇒ d(E + PV ) = 0 =⇒ dH = 0

(1.9)

In a spontaneous process of an adiabatic-isobaric system,

the equilibrium corresponds to the minimum of the enthalpy

dH = 0, H(S, P ) = Hmin (1.10)

jahir@physicsguide.in 7 Physicsguide
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1.3 Helmholtz free energy as a thermody-

namic potential:

The Helmholtz potential (free energy) is defined as

F = E − TS (1.11)

the differential form

dF = dE−SdT −TdS =⇒ dF = −SdT −PdV +µdN

(1.12)

since dE = TdS−PdV+µdN. Thus, knowing F = F (T, V,N),

S, P and µ could be determined as

− S =

(
∂F

∂T

)
V,N

, −P =

(
∂F

∂V

)
T,N

, µ =

(
∂F

∂N

)
T,V

(1.13)

The Helmholtz potential is useful in defining the equilibrium

of a non-isolated system in contact with heat bath at con-

stant temperature T . The system is interacting with the

heat bath through heat exchange only. Consider an arbi-

trary isothermal transformation of this system from a state

A to state B. By the second law , one have∫ B

A

dQ

T
≤ S(B)− S(A) (1.14)

jahir@physicsguide.in 8 Physicsguide
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Since T is constant
∆Q

T
≤ ∆S (1.15)

where ∆Q is the amount of heat absorbed during the trans-

formation and ∆S = S(B)− S(A). Using the first law, the

inequality could be written as

∆W ≤ −∆E + T∆S =⇒ ∆W ≤ −∆F (1.16)

where ∆W is the work done by the system. Thus, the equi-

librium of an isothermal system which does not perform

work (mechanically isolated) always looks for a minimum

of Helmholtz potential. Irreversible process happen sponta-

neously, until the minimum

dF = 0, F = Fmin (1.17)

is reached.

1.4 Gibbs free energy as a thermodynamic

potential:

The Gibb’s potential (free energy) is defined as

G = E − TS + PV = F + PV (1.18)

jahir@physicsguide.in 9 Physicsguide
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the differential form

dG = −SdT + V dP + µdN (1.19)

since E = TS − PV + µN for a system attached with heat

bath as well as with a bariostat. System exchanges heat

and does some work due to volume expansion at constant

pressure. The thermodynamic variables can be obtained in

terms of G(P, T,N) as

− S =

(
∂G

∂T

)
P,N

, V =

(
∂G

∂P

)
T,N

, µ =

(
∂G

∂N

)
T,P

(1.20)

Notice that the chemical potential µ can be defined as Gibb’s

free energy per particle. Consider a system at constant pres-

sure and temperature. For isothermal process,

∆W ≤ −∆F (1.21)

as it is already seen. If the pressure remain constant ∆W =

P∆V, then

P∆V + ∆F ≤ 0 =⇒ ∆G ≤ 0 (1.22)

Thus, a system kept at constant temperature and pressure,

the Gibb’s free energy never increases and the equilibrium

jahir@physicsguide.in 10 Physicsguide
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state corresponds to minimum Gibb’s potential. Irreversible

spontaneous process in an isothermal - isobaric system

dG = 0 G = Gmin (1.23)

are always achieved.

1.5 Grand potential as a thermodynamic

potential:

The grand potential is defined as

Φ = E − TS − µN = F − µN = −PV (1.24)

since E = TS − PV + µN. The system attached with heat

bath as well as with a particle reservoir. System exchanges

heat with heat bath and exchanges particle with the parti-

cle reservoir. Differentially the grand potential can be ex-

pressed as

dΦ = dE − TdS − SdT − µdN −Ndµ
= −SdT − PdV −Ndµ

(1.25)

jahir@physicsguide.in 11 Physicsguide
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since dE = TdS − PdV + µdN. The thermodynamic vari-

ables are then obtained in terms of Φ(V, T, µ) as

− S =

(
∂Φ

∂T

)
V,µ

, −P =

(
∂Φ

∂V

)
T,µ

, −N =

(
∂Φ

∂µ

)
T,V

(1.26)

Consider an isothermal system at constant chemical poten-

tial. For an isothermal system

∆W ≤ −∆F (1.27)

and ∆W = −µ∆N since µ is constant and the inequality

leads to

∆F − µ∆N ≤ 0 =⇒ ∆Φ ≤ 0 (1.28)

Thus, a system kept at constant temperature and chemical

potential, the grand potential never increase and the equi-

librium state corresponds to minimum grand potential. Ir-

reversible spontaneous process in an isothermal system with

constant chemical potential correspond to

dΦ = 0 Φ = Φmin (1.29)

jahir@physicsguide.in 12 Physicsguide
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1.6 Maxwell’s relations

A number of relations between the thermodynamic state

variables can be obtained since the thermodynamic poten-

tials E,H, F and G( also Φ) are state functions and have

exact differentials. We know for exact differentials

dφ = Mdx+Ndy =⇒
(
∂M

∂y

)
x

=

(
∂N

∂x

)
y

(1.30)

� From

dE = TdS − PdV(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

(1.31)

�

dH = TdS+V dP =⇒
(
∂T

∂P

)
S

=

(
∂V

∂S

)
P

(1.32)

�

dF = −SdT − PdV =⇒
(
∂S

∂V

)
T

=

(
∂P

∂T

)
V

(1.33)

�

dG = −SdT + V dP =⇒ −
(
∂S

∂P

)
T

=

(
∂V

∂T

)
P

(1.34)

jahir@physicsguide.in 13 Physicsguide
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1.7 Response functions

1.7.1 Definitions

A great deal can be learned about a macroscopic system

through its response to various changes in externally con-

trolled parameters. Important response functions for a PV T

system are the specific heats at constant volume and pres-

sure,

CV =

(
d̄Q

∂T

)
V

= T

(
∂S

∂T

)
V

CP =

(
d̄Q

∂T

)
P

= T

(
∂S

∂T

)
P

(1.35)

The isothermal and adiabatic compressibilities,

KT = − 1

V

(
∂V

∂P

)
T

KS = − 1

V

(
∂V

∂P

)
S

(1.36)

and the coefficient of thermal expansion

α =
1

V

(
∂V

∂T

)
P,N

(1.37)

jahir@physicsguide.in 14 Physicsguide
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this can be written as

αP =
1

V

(
∂V

∂T

)
P

=
1

V

(
∂2G

∂T∂P

)
(1.38)

1.7.2 Relations between the response function

Intuitively, we expect the specific heats and compressibili-

ties to be positive and CP > CV , KT > KS. In this section

we derive relations between these response functions. The

intuition that the response functions are positive will be

justified in the following section in which we discuss ther-

modynamic stability. We begin with the assumption that

the entropy has been expressed in terms of T and V and

that the number of particles is kept fixed. Then

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV

T

(
∂S

∂T

)
P

= T

(
∂S

∂T

)
V

+ T

(
∂S

∂V

)
T

(
∂V

∂T

)
P

CP − CV = T

(
∂S

∂V

)
T

(
∂V

∂T

)
P

(1.39)

We now use the Maxwell relations and the chain rule

jahir@physicsguide.in 15 Physicsguide
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(
∂z

∂x

)
y

(
∂y

∂z

)
x

(
∂x

∂y

)
z

= −1 (1.40)

We get(
∂S

∂V

)
T

=

(
∂P

∂T

)
V

= −
(
∂P

∂V

)
T

(
∂V

∂T

)
P

CP − CV = −T
(
∂P

∂V

)
T

(
∂V

∂T

)2

P

=
TV

KT
α2

(1.41)

In a similar way we obtain a relation between the com-

pressibilities KT and KS . Assume that the volume V has

been obtained as function of S and P.

Then we get

dV =

(
∂V

∂P

)
S

dP +

(
∂V

∂S

)
P

dS

− 1

V

(
∂V

∂P

)
T

= − 1

V

(
∂V

∂P

)
S

− 1

V

(
∂V

∂S

)
P

(
∂S

∂P

)
T

KT −KS = − 1

V

(
∂V

∂S

)
P

(
∂S

∂P

)
T

(1.42)

The Maxwell relation and(
∂V

∂S

)
P

=

(
∂V

∂T

)
P

(
∂S

∂T

)−1
P

jahir@physicsguide.in 16 Physicsguide
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gives

KT −KS =
TV

CP
α2 (1.43)

Now we have useful relations

CP (KT −KS) = KT (CP − CV ) = TV α2 (1.44)

And
CP
CV

=
KT

KS
(1.45)

1.8 Thermodynamics of a magnetic sys-

tem

In order to study magnetic properties of matter one requires

the expression for the work of magnetizing a material. One

needs to be careful in defining precisely the system and the

processes in order to calculate magnetic work done. Let us

assume that the effects of pressure and volume on a mag-

netic system is negligible.

jahir@physicsguide.in 17 Physicsguide
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1.8.1 Definition of potentials

The thermodynamic parameters of a magnetic system are

going to be the external magnetic induction B, total mag-

netization M and temperature T instead of P, V and T of

a fluid system. The first law of thermodynamics: the differ-

ential change in internal energy E for a reversible change of

state can be written in two different but equivalent forms

as

dE = TdS −MdB (1.46)

or

dE = TdS +BdM (1.47)

we will use the SECOND form

We define other state functions and thermodynamic po-

tentials such as enthalpy H(N,S,B), the Helmholtz free

energy F (N,M, T ) and the Gibbs free energy G(N,B, T ).

The definitions of these thermodynamics state functions and

differential change in a reversible change of state are given

by

jahir@physicsguide.in 18 Physicsguide
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H(N,S,B) = E −MB and dH = TdS −MdB

F (N,M, T ) = E − TS and dF = −SdT +BdM

G(N,B, T ) = E − TS −MB and dG = −SdT −MdB
(1.48)

where explicit N dependence is also avoided. If one

wants to take into account of number of particles there must

be another term µdN in all differential forms of the state

functions. It can be noticed that the thermodynamic rela-

tions of a magnetic system can be obtained from those in

fluid system if V is replaced by −M and P is replaced by

B.

The thermodynamic parameters can be obtained as

T =

(
∂E

∂S

)
M

or T =

(
∂H

∂S

)
B

(1.49)

S = −
(
∂F

∂T

)
M

or S = −
(
∂G

∂T

)
B

(1.50)

B =

(
∂E

∂M

)
S

or B =

(
∂F

∂M

)
T

(1.51)

M = −
(
∂H

∂B

)
S

or M = −
(
∂G

∂B

)
T

(1.52)

jahir@physicsguide.in 19 Physicsguide
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1.8.2 Maxwell relations for magnetic systems

�

dE = TdS +BdM =⇒
(
∂T

∂M

)
S

=

(
∂B

∂S

)
M

(1.53)

�

dH = TdS −MdB =⇒
(
∂T

∂B

)
S

= −
(
∂M

∂S

)
B

(1.54)

�

dF = −SdT +BdM =⇒
(
∂S

∂M

)
T

= −
(
∂B

∂T

)
M

(1.55)

�

dG = −SdT −MdB =⇒
(
∂S

∂B

)
T

=

(
∂M

∂T

)
B

(1.56)

1.8.3 Response functions for magnetic systems

The specific heats CM and CB are the measures of the heat

absorption from a temperature stimulus at constant magne-

jahir@physicsguide.in 20 Physicsguide
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tization and constant external magnetic field respectively.

The definition of heat capacities are :

CM = T

(
∂S

∂T

)
M

= −T
(
∂2F

∂T 2

)
M

CB = T

(
∂S

∂T

)
P

= −T
(
∂2G

∂T 2

)
B

(1.57)

In case of magnetic systems, instead of isothermal and adia-

batic compressibilities one have the isothermal and the adi-

abatic magnetic susceptibilities

χT =

(
∂M

∂B

)
T

= −
(
∂2G

∂B2

)
T

(1.58)

and

χS =

(
∂M

∂B

)
S

= −
(
∂2H

∂B2

)
S

(1.59)

where M is the total magnetization and B is the external

magnetic field. Note that the normalizing factor of 1/V is

absent here.

The change of magnetization M with respect to tem-

perature T under constant external magnetic field αB, is

defined as

αB =

(
∂M

∂T

)
B

=

(
∂2G

∂T∂B

)
(1.60)

jahir@physicsguide.in 21 Physicsguide
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The response functions are not all independent of one

another. It can be shown that

CB/CM = χT/χS (1.61)

Two other relations you can prove are

χT (CB − CM) = Tα2
B and CB (χT − χS) = Tα2

B

(1.62)

2 Some applications of thermody-

namics

2.1 TdS equations

The entropy of a pure substance can be considered as a

function of any two variables, such as T and V ; thus,

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV

TdS = T

(
∂S

∂T

)
V

dT + T

(
∂S

∂V

)
T

dV

(2.1)

jahir@physicsguide.in 22 Physicsguide
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since TdS = d̄Q for a reversible isochoric process, it

follows that

T

(
∂S

∂T

)
V

= CV (2.2)

and from the Maxewells relation
(
∂S
∂V

)
T

=
(
∂P
∂T

)
V

TdS = CV dT + T

(
∂P

∂T

)
V

dV (2.3)

This is the firs TdS equation.

Similarly take entropy as a function of T and P and

derive the second TdS equation

TdS = CPdT − T
(
∂V

∂T

)
P

dP (2.4)

2.2 Internal energy equations

For the internal energy equation we start from

dU = TdS − PdV (2.5)

and take partial derivative with respect to V keeping T con-

stant (
∂U

∂V

)
T

= T

(
∂S

∂V

)
T

− P (2.6)

jahir@physicsguide.in 23 Physicsguide
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Using Maxwell’s third relation, (∂S/∂V )T = (∂P/∂T )V ,

we get

(
∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P (2.7)

This equation is very useful.

Similarly taking partial derivative with respect to P both

side of the equation dU = TdS − PdV prove that(
∂U

∂P

)
T

= −T
(
∂V

∂T

)
P

− P
(
∂V

∂P

)
T

(2.8)

2.3 Heat transfer of isothermal expansion

of van der Waals gas

Start with

TdS = CV dT + T

(
∂P

∂T

)
V

dV

From van der Waal’s equation

P =
RT

V − b
− a

V 2
(2.9)

jahir@physicsguide.in 24 Physicsguide



P
hy

si
cs

gu
id

e

©Sk Jahiruddin, 2020 Thermodynamic potentials and applications

(
∂P

∂T

)
V

=
R

V − b
Hence

TdS = CV dT +RT
dV

V − b
(2.10)

since T is constant, CV dT = 0; and, since the process is

reversible, q =
∫
Tds Therefore,

q = RT

∫ Vf

Vi

dV

V − b
(2.11)

Finally

q = RT ln
Vf − b
Vi − b

(2.12)

2.4 Reversible isothermal change of pres-

sure

When T is constant

TdS = −T
(
∂V

∂T

)
P

dP and so Q = −T
∫ (

∂V

∂T

)
P

dP

(2.13)

The volume expansivity is

β =
1

V

(
∂V

∂T

)
P

jahir@physicsguide.in 25 Physicsguide
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then

Q = −T
∫
V βdP (2.14)

In the case of a solid or liquid, V and β do not change much

with pressure. So we can take them out of the integration

to get

Q = −TV β
∫ Pf

Pi

dP =⇒ Q = −TV β (Pf − Pi) (2.15)

It is seen from this result that, as the pressure is in-

creased isothermally, heat will flow out if β is insositive but

that, prossunce with a negative expansivity (such as wa-

ter between 0 and 4◦C, or a rubber band), an isothermal

increase of pressure causes an absorption of heat.

If the pressure on 15cm3 of mercury at 20◦C is increased

reversibly and isothermally from 0 to 1000atm, the heat

transferred will be approximately

Q ' −TV βPf

where T = 293K, V = 2× 10−5m3, β = 1.81× 10−4K−1,

and Pf = 1.01× 108Pa Hence,
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Q = −(293K)
(
1.5× 10−5m3

) (
1.81× 10−4K−1

) (
1.01× 108Pa

)
= −80.3N ·m
= −80.3J

2.5 Internal energy of van der Waal gas

P =
RT

V − b
− a

V 2

and (
∂P

∂T

)
V

=
R

V − b
so (

∂U

∂V

)
T

= T
R

V − b
− RT

V − b
+

a

V 2
=

a

V 2
(2.16)

SO

dU = CV dT +
a

V 2
dV (2.17)

Finally

U =

∫
CV dT −

a

V
+ const. (2.18)
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2.6 Heat capacities of ideal gas

The difference between the heat capacities is given by

CP − CV = TV α2/κT (2.19)

where α = 1
V

(
∂V
∂T

)
P

is the volume expansion coefficient

and κT = − 1
V

(
∂V
∂P

)
T

is the isothermal compressibility. Using

this relation, the difference between heat capacities of an

ideal gas could be easily obtained. For one mole of an ideal

gas, the equation of state is PV = RT where R is the

universal gas constant. Thus,

α =
1

V

(
∂V

∂T

)
P

=
1

V

R

P
=

1

T
(2.20)

and

κT = − 1

V

(
∂V

∂P

)
T

= − 1

V

(
−V
P

)
=

1

P
(2.21)

so the differences

CP − CV = TV

(
1

T

)2
1

1/P
=
PV

T
= R (2.22)

As T → 0, by third law of thermodynamics, the entropy

S → S0 = 0 becomes independent of all parameters like
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pressure, volume and temperature. Therefore, in the limit

T → 0 the heat capacities also tend to zero,

CV = T

(
∂S

∂T

)
V

→ 0 and CP = T

(
∂S

∂T

)
P

→ 0

(2.23)

This is because of the fact that as T → 0, the system

tends to settle down in its nondegenerate ground state. The

mean energy of the system then become essentially equal to

its ground state energy, and no further reduction of temper-

ature can result in a further reduction of mean energy.

Not only the individual heat capacity goes to zero but

also their difference goes to zero as T → 0. Because, the

volume expansion coefficient α also goes to zero

α =
1

V

(
∂V

∂T

)
P

= −
(
∂S

∂P

)
T

→ 0 (2.24)

However, the compressibility κT , a purely mechanical

property, remains well-defined and finite as T → 0. Thus,
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as T → 0 CP − CV → 0 (2.25)

This is not in contradiction to the ideal gas result CP −
CV = R because as T → 0, the system approaches its

ground state and quantum mechanical effects become very

important. Hence the classical ideal gas equation PV = RT

is no longer valid as T → 0.

2.7 Gibbs paradox:

An isolated system with two parts of equal volume V each

contains N number of molecules of the same monatomic

perfect gas at the same temperature T , pressure P . Ini-

tially, the two parts were separated by a membrane and

then the membrane was removed. The system is allowed to

equilibrate. The change in entropy is given by

∆S =

∫
δQ

T
=

1

T

∫
δQ (2.26)

From first law, for a perfect gas dE(T ) = δQ+ δW = 0 and

thus δQ = −δW = PdV. The volume changes from V to
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2V for the each part. Therefore,

∆S =
1

T

∫
PdV

= NkB

∫ 2V

V

dV

V
+NkB

∫ 2V

V

dV

V

= 2NkB ln 2 > 0

(2.27)

The entropy of the system then may increase indefinitely

by putting more and more membranes and removing them.

However, the process is reversible. By putting back the

membranes one would recover the initial state. According

to Clausius theorem, the change in entropy must be ∆S = 0

in a reversible process. This discrepancy is known as Gibb’s

paradox. The paradox would be resolved only by applying

quantum statistical mechanics. The same problem will be

discussed again in the next section.

2.8 Radiation:

According to electromagnetic theory, the pressure P of an

isotropic radiation field is equal to 1/3 of the energy density:

P = u(T )/3 = U(T )/3V (2.28)
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where V is the volume of the cavity, U is the total energy.

Using the thermodynamic principles, one could obtain Ste-

fan’s law: u = aT 4, where a is a constant.

To do that we will start from the radiation pressure and

also take that the total energy of photon gas is proportional

to volume.

By the second law dU = TdS − PdV, thus(
∂U

∂V

)
T

= T

(
∂S

∂V

)
T

−P =⇒
(
∂U

∂V

)
T

= T

(
∂P

∂T

)
V

−P

(2.29)

since
(
∂S
∂V

)
T

=
(
∂P
∂T

)
V

by Maxwell equation. Since U =

u(T )V(
∂U

∂V

)
T

= u(T ) and

(
∂P

∂T

)
V

=
1

3

du

dT
(2.30)

Hence

u(T ) =
T

3

du

dT
− 1

3
u =⇒ T

du

dT
= 4u =⇒ u = aT 4

(2.31)

where a is a constant.
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