

Simpson's 1/3 Rule

Simpson's 1/3 Rule is a numerical integration method often used in chemistry and chemical engineering to approximate the area under a curve when the exact integral is difficult or impossible to calculate analytically. It's especially useful in experimental data analysis.

What is Simpson's 1/3 Rule?

Simpson's 1/3 Rule estimates the definite integral of a function by dividing the interval into an **even number of segments** and approximating each pair of sub intervals using a **parabola** (second-degree polynomial).

Formula:

Simpson's 1/3 Rule estimates the definite integral of a function by dividing the interval into an **even number** of segments and approximating each pair of subintervals using a **parabola** (second-degree polynomial).

Formula:

$$\int_a^b f(x) \, dx pprox rac{h}{3} \left[f(x_0) + 4 f(x_1) + 2 f(x_2) + 4 f(x_3) + \dots + f(x_n)
ight]$$

Where:

- $h = \frac{b-a}{n}$ (step size)
- n = even number of intervals
- x_0, x_1, \ldots, x_n are the values of x over the interval

Application in Chemistry:

1. Titration Curve Analysis:

When you have experimental **pH vs volume** data, and you want to calculate the **total** acid or base added.

2. Calculating Enthalpy (ΔH):

For temperature vs heat added data, Simpson's rule helps approximate the **area under a heat curve**, giving the total energy change.

3. Absorbance vs Concentration (Beer-Lambert Law curves):

To find total absorbance over a range of wavelengths in **spectrophotometry**.

4. Rate of Reaction:

If you have discrete data for concentration over time, it helps to compute **total change** or **area under rate curves**.

Advantages:

More accurate than trapezoidal rule when the curve is not linear.

Ideal when the function is smooth and you have an even number of data points.

Important Condition:

The number of sub-intervals **must be even** (i.e., data must be in odd number of points: x_0 to x_n , with n even).

Example in Chemistry

Let's say you have 5 values of absorbance data across wavelengths:

	wavelengths	absorbance
400	777	0.10
420	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.20
440	100	0.25
460		0.22
480		0.18

Use **Simpson's 1/3 Rule** to estimate the **area under the absorbance curve** from 400 nm to 480 nm.

Solution:

We are given:

Intervals: 400, 420, 440, 460, 480 \rightarrow Total of 5 data points \Rightarrow 4 intervals \rightarrow Even number (n = 4)

.....

Step size:

Now apply the Simpson's 1/3 Rule:

$$\int_{400}^{480} A(\lambda) \, d\lambda pprox rac{h}{3} \left[f(x_0) + 4 f(x_1) + 2 f(x_2) + 4 f(x_3) + f(x_4)
ight]$$

Substitute values:

$$= \frac{20}{3} [0.12 + 4(0.18) + 2(0.20) + 4(0.22) + 0.19]$$
$$= \frac{20}{3} (2.31) \approx 6.67 \times 2.31 \approx 15.41$$

The estimated area under the absorbance curve is approximately 15.41 absorbance nm.

A titration-based example using Simpson's 1/3 Rule in chemistry

Problem: During an acid-base titration, the **pH of a solution** was measured at various volumes of base added:

	Volume of NaOH added (mL)	рН
0		2.0
5		3.1
10		4.8
15		7.0
20		9.2

Estimate the **area under the pH vs volume curve** from 0 mL to 20 mL using **Simpson's 1/3 Rule**.

Given: a = 0, b = 20

Number of interval =20 (even)

•
$$h = \frac{20-0}{4} = 5 \,\mathrm{mL}$$

Let's assign:

- $f(x_0) = pH(0) = 2.0$
- $f(x_1) = pH(5) = 3.1$
- $f(x_2) = pH(10) = 4.8$
- $f(x_3) = pH(15) = 7.0$
- $f(x_4) = pH(20) = 9.2$

Now apply Simpson's 1/3 Rule:

$$\int_0^{20} \text{pH} \, dV \approx \frac{h}{3} \left[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + f(x_4) \right]$$

$$= \frac{5}{3} [2.0 + 4(3.1) + 2(4.8)4(7.0)9.2)]$$

$$= \frac{5}{3} \text{X} \, 61.2 \approx 1.667 \, \text{X} \, 61.2 \approx 102.0$$

The estimated area under the pH-volume curve is approximately 102.0 pH·mL.

This can represent the **total acidity or buffering capacity** depending on the context of the experiment.

A thermochemistry example using Simpson's 1/3 Rule to estimate the enthalpy change (ΔH) from experimental data.

Problem (Enthalpy-Temperature Example):

In a calorimetry experiment, heat was added to a substance, and the temperature was recorded at regular intervals. The data is as follows:

Time (min)	Temperature
0	25.0
0	28.5
4	32.1
6	35.6
8	39.0

Estimate the total temperature rise (area under the T-time curve) using Simpson's 1/3 Rule, which helps approximate the total heat absorbed if the heat flow is constant.

.....

a=0, b=8, n= 4 intervals (even)

Step size :
$$h = \frac{8-0}{4} = 2min$$

Let,
$$T_0 = 25.0$$
, $T_1 = 28.5$, $T_2 = 32.1$, $T_3 = 35.6$, $T_4 = 39.0$

Apply Simpson's 1/3 Rule:

$$\int_0^8 T(t)\,dt pprox rac{h}{3}\left[T_0 + 4T_1 + 2T_2 + 4T_3 + T_4
ight]$$

Substitute the values:

$$= \frac{2}{3} [25.0 + 4(28.5) + 2(32.1) + 4(35.6) + 39.0]$$

$$= \frac{2}{3} (25.0 + 114.0 + 64.2 + 142.4 + 39.0) = \frac{2}{3} \times 384.6 \approx 256.4$$

The estimated area under the temperature-time curve is approximately 256.4 °C·min.

This is **proportional to the total heat absorbed** if the heat is applied uniformly (constant rate), and can be used to estimate ΔH when specific heat and mass are known:

$$\Delta T = q = m.c. \Delta T$$

.....