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One –Particle Orbital –Angular –Momentum Eigenfunctions and Eigenvalues 

Now it is time to find the common eigenfunctions of  , which is denoted by Y. Since 
these operators involves only θ and φ, Y is a function of these two ccordinates:Y=Y(θ,φ). Now 
we have to solve – 

 

 

 

 

 

 

 

 

Since the operator in ( eq. 70) does not involve θ, now separation of variable is introduced – 

                            

 

 

Equation (70) becomes    

……………………………….. (72) 

   ……………………………………….. (68) 

    ………………………………………..(69) 

   …………………..(70) 

……………….. (71) 
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Where A is an arbitrary constant. 

Is T suitable as an eigenfunction ? The answer is no, since it is not, in general, a single –valued 
function. If we add 2π to φ, we will still be at the same point in space, and hence  we want no 
change in T when this is done. For T to be single- valued, we have the restriction 

                          ……………………………….. (73) 

 

Therefore  (Eqn 73) gives  

                                   …………………………………. (74) 

 

and eqn 72 becomes  

 …………………. (75) 

The eigen values for  the zcomponent of angular momentum are quantized. 
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(we did the same thing for the wave function of the particle in a three dimensional 
box).Therefore 

…………………………….. (80) 

We now solve  [ Eq. 69) for the eigen values c of  Using ( eq. 67) for  (Eq. 71) 
for Y and ( Eq. 80),we have 
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   ……………….. (81) 

To solve ( Eq. 81), we carry out some tedious manipulations. 

…………………………………………………………………………………………………….. 

First for convenience, we change the independent variable by making the substitution  

 w=cosθ   ……………………………………….(82) 

This transforms S into some new function of w: 

 S(θ)=G(w) …………………………………(83) 

The chain rule gives 

 …………………………(84) 

 

To calculate d2S/dθ2, we use some operator algebra: 

 ………………………..(85) 

Using (Eq.85), ((Eq.84), and cotθ=cosθ/sinθ=w/(1-w2)1/2, we find that ((Eq.81) becomes 

  ……………………..(86) 
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The range of w is  -1≤w≤1. 

To get a two-term recursion relation when we try a power-series solution, we make the following 
change of dependent variable. 

G(w)= (1-w2)│m│/2H(w)     ………………………..( 87) 

Differentiating (Eq.87), we evaluate G∕ and G∕∕, and (Eq.86) becomes, after we divided by           
(1-w2)│m│/2, 

  …………….(88) 

We now try a power series for H: 

 …………………………………..(89) 

Differentiating , we have 

  

  

Substitution of these power series into ( Eq.88) yields, after combining sums, 

 

……………………………………………………………………………………………. 

……(90) 

Just as in the harmonic-oscillator case, the general solution of ( Eq.88) is an arbitrary linear 
combination of a series of even powers ( whose coefficients are determined by a0) and a series of 
odd powers ( whose coefficients are determined by a1). It can be shown that the infinite series 
defined by the recursion relation ( Eq.90) does not give well-behaved eigenfunctions. Hence as 
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in the harmonic-oscillator case, we must cause one of the series to break off, its last term being 
akw

k. We eliminate the other series by setting a0
 or a1 equal to zero, depending on whether k is 

odd or even. 

Setting the coefficient of ak in eq.90 equal to zero, we have 

     ………………………..(91) 

Since │m│ takes on the values 0,1,2,….., the quantity k+│m│takes on the values 0,1,2,……We 
therefore defined the quantum number  l as  

 l ≡k+│m│            ………………………………………(92) 

and the eigenvalues for the square of the magnitude of angular momentum are  

 l=0,1,2…………   …………………..(93) 

The magnitude of the orbital angular momentum of a particle is  

    …………………………………… (94) 

From ( Eq. 92), it follows that │m│≤ l. The possible values for m are thus 

               m= -l, -l+1,-l+2,…….-1,0,1,,,,,l-2,l,l-1,l    ………………..(95) 

Let us examine the angular-momentum eigenfunctions. From ( Eq. 82) ( Eq.83) (Eq.84) ,( 
Eq.87), (Eq.89) and (Eq.93), the theta factor in the eigenfunction is  

 ………………………………. (96) 

Where the sum is over even or odd values of j, depending on whether l-│m│is even or odd. The 
coefficients aj satisfy the recursion relation (Eq.90), which using ( Eq.93) becomes 

   ……………………..(97) 

The  and  eigenfunctions are given by Eq.71 and Eq.80 as  
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  ………………..(98) 

………………………….Example........................................................ 

Find  and  the  and  eigenvalues for (a) l=0 ; (b) l=1 

(a)  For  l=0, Eq. 95 gives m=0 and Eq. 96 becomes 

S0,0(θ) = a0 …………………………………………………….(99) 

The normalization condition Eq. 79 gives 

 

Eq. 98 gives    

                                         ……………………………(100) 

[ Obviously, Eq. 100 is an eigenfunction of the operators , ,  and , Eq.64- Eq. 67] 

For l=0, there is no angular dependence in the eigenfunction; we say that the eigenfunctions 
are Spherical symmetric  for l=0. 

 For l=0 and m=0, Eq. 68, Eq. 69, Eq.74 and Eq. 93 give the  

eigenvalues as c=0 and the  eigenvalue as b=0. 
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In summary, the one particle orbital angular- momentum eigenfunctions and eigenvalues are 
[(Eq.68), (Eq.69), (Eq.74) and (Eq.93)] 

             ……………………..(107) 

       m= -l,-l+1,….l-1,l     ……………………..(108) 

Where the eigenfunctions are given by (Eq. 106).Often the symbol ml  is used instead of m for 

the Lz quantum number. 

Since l >>│m│, the magnitude  of the orbital angular momentum L is greater than the 

magnitude  of its z component Lz, except for l=0. If it were possible to have the angular –

momentum magnitude equal to its z component, this would mean that the x and y components 
were zero, and we would have specified all three components of L. However, since the 
components of angular momentum do not commute with each other, we cannot do this. The one 
exception is when l  is zero. In this case, │L│2=L2x + L2y+ L2z has zero for its eigenvalue, and 

it must be true that allthre components Lx, Ly and  Lz have zero eigenvalues. From Eq.12, the 
uncertainties in angular – momentum components satisfy 

         …………………………. (109) 
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and two similar equations obtained by cycloc permutation. When the eigenvalues of  

are zero,   the right-hand sides of Eq. 109 and the two similar equations 
are zero, and having  is permitted. But what about the statement in section 
1.1 that to have simultaneous eigenfunctions of two operators the operators must commute? The 
answer is that this theorem refers to the possibility of having a complete set of eigenfunctions of 

one operator be eigenfunctions of the other operator. Thus, even though  , do not 

commute, it is possible to have some of the eigenfunctions   ( those with l =0=m) be eigen 

functions of  .However, it is impossible to have all the  eigenfunctions also be 

eigenfunctions of . 

                                    

 

 Figure 7.  Orientation of L 

Since we cannot specify Lx and Ly, the vector L can lie anywhere on the surface of a cone whose 

axis is the z axis, whose altitude is  and whose slant height is  (Fig7). The possible 
orientations of L with respect to the z axis for the case  l=1 are shown in fig 7. For each 

eigenvalue of  these are 2l+1 different eigenfunctions  corresponding to the 2l+1 values of 

m. We say that the    eigenvalues are (2l+1)- fold degenerate. The term degeneracy is 

applicable to the eigenvalues of any operator, not just the Hamiltonian. 

Of course, there is nothing special about the z axis; all directions of space are equivalent. If we 
had chosen to specify L2 and Lx ( rather than Lz),we would have gotten the same eigenvalues for 

Lx as  we found for Lz. However, it is easier to solve the  eigenvalue equation because  has 
a simple form in spherical coordinates , which involve the angle of rotation φ about the z-axis. 

……………………………………………..End………………………………………………… 


