Semester IV

One —Particle Orbital —Angular -Momentum Eigenfunctions and Eigenvalues

Now it is time to find the common eigenfunctions of L? and Lz-, which is denoted by Y. Since
these operators involves only 0 and ¢, Y is a function of these two ccordinates:Y=Y(0,p). Now

we have to solve — ) L

f‘zY@’ @) =bY (0, 0) (68)
LY (6,8)=cY (6, b) (69)

where b and c are the eigenvalues of L,and LINJ)Y
Using the L, operator, we have -

5 0 _
=i g Y(9, ) = Y (6, @)

Since the operator in ( eq. 70) does nb‘ irholve 0, now separation of variable is introduced —

la

—

Y (6, ¢) = S(O)T(¢)

¢

{
Equation (70) becﬁs

ﬂ-f,,;% [S()T(¢)] = bS(6)T(¢)

~ihS(6) %ﬁ? = bS(e)T(¢)
ar(¢) b
(6 %7
o T(¢) = Ae
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Angular Momentum

Where A is an arbitrary constant.

Is T suitable as an eigenfunction ? The answer is no, since it is not, in general, a single —valued
function. If we add 2z to ¢, we will still be at the same point in space, and hence we want no
change in T when this is done. For T to be single- valued, we have the restriction

T(¢ + 2m) = T($) \L

A eib‘,bfﬁ e."hZﬂﬂr = A eibrlbﬂi

e:'hl'.lrfﬁ =1

To satisfy e = cos @ + i sin @ = 1, we must have a = 27rm, where D )

=0, £l 42, & e

Therefore (Eqn 73) gives A
h=2 q
2ubfh =2mm L Oy (74)
N
b= mh, m=----—-2,—-1,0,1,2,...
b
and eqn 72 becomes /‘ w

T(¢) = Ae™, m=0, £1, £2,...

The eigen values for the zcompoyt’;)f angular momentum are quantized.
W,

<
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Angular Momentum

r the z component of angular momentum are quantized.

The eigenvalues fo
ormalizing some function Fof r,

We fix A by normalizing 7. First let us consider n
9. and ¢. The ranges of the independent variables are (see Fig.6')

0<f<mw, O0=<¢=27 (76)

0<r<o0,

The infinitesimal volume element in spherical coordinates is

dr = rlsin@drdddep e (77)

The quantity (eq.77) is the volume of an infinitesimal region of space for which the
' in the ranges r to r + dr, 9to 8 + d6,.and ¢ to ¢ + d¢. The

spherical coordinates lie : )
normalization condition for F in spherical coordinates 1s therefore

Jm[ J'-n'!: J‘3W|F2(r‘ 91 qb)\ d¢:|5"1 9 dgjlrz dr =1 sasssinast b teadan (78)
0 ] 0 :

6/

If F happens to have the form
F(r,0,¢) = R(NSOT(®)

then use of the integral identity gives for (Eqn78)

J 3 IRX(r)|r? dr r |$%(0)| sin 8 d6 J T%(¢) db = 1
0 0 : , 47

0

factor of F separately:

onvenient to normalize eaph ’
=TT
[(Irds=1 o
0 o

anditisc
f |s4sin6.d6 = 1.
0

f R dr =1,
0

. ‘ ‘ |
(we did the same.thing for the wave function of the particle in a three dimensional

box).Therefore J

o 2w
J (Aei;rrc,b)*Aefrrrqi: d¢ = 1 = |/4|2 J d¢
0

A-emn

T($) = ——em™; “m=0, %1, £2,...

N
3

We now solve L*Y = ¢¥ [ Eq. 69) for the ei L2 Usi i
: gen values ¢ of L. Using ( eq. 67) for L*.
for Y and ( Eq. 80),we have g (eq. 67) for (Eq. 71)
3
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Semester IV

L[ d 1. @ , .
—rz-( + cot@ — + )(5(6) - “""’)=cS(6) 1 m

96* 3 " sin% o¢? Vo N
d*s ds m? ¢
o teotg - g &
de? d6  sin*6 w2 R (81)

To solve ( Eq. 81), we carry out some tedious manipulations.

.......................................................................................................... L

First for convenience, we change the independent variable by making the substitutiop

WECOSO e (82) )
This transforms S into some new function of w:
SOEG(W) e oo ...(83)
The chain rule gives o
5 0 g0 i (5D
d9 — dw do d w} .............................. (84)

To calculate d*S/d6% we use some operator algebra:

2 -
§ =(1- wz)‘/zﬁ (1- w‘*)”z;f%
& =0 - _wﬁjf; (1= w1 = W) i(—m) L
g;;z'_(l i Wz)g;g— wgg :
e e e, (85)

Using (Eq.85), ((Eq.84), and cotd=cos6/sind=w/(1-w?)"%, we find that ((Eq.81) becomes

(1 - wz)_cfg dG I’C mZ

AWt [ M
dw dw_ | 2 ] e Gw) =0

4 Dr.Sandip Kumar Rajak|Dumbkal College



Semester IV

Angular Momentum

The range of w is -1<w<l.

To get a two-term recursion relation when we try a power-series solution, we make the following
change of dependent variable.

Gw)=(1-wA)!™Paew)y (87)

Differentiating (Eq.87), we evaluate G'and G/, and (Eq.86) becomes, after we divided by L
(1_W2)|m|/2’ N

(U= WHH" = 2(lm| + \WH' + [ch™2 = |mil(m| + 1)]H = 0

We now try a power series for H:

H(w) = > aw/ A
=0 o .................... (89)
Differentiating , we have N
& -
H'(w) = 3 jawi™!

H"(w) = E[;j(j = Dawi=73 (j +2)(j + Daj.
i= i=0

Substitution of these power series’ﬁtoy( Eq.88) yields, after combining sums,

N

S 16 +20 + et (-2 =2 + &= o =l i =

...................... € oerressrnsssssssssssssssssssasses s ERss eSS R RS SER RS R RS

Setting the coefficient of w/ equal to zero, we have the recursion relation
Gl el - o
s (j+10j+2) : (90)

Just as in the harmonic-oscillator case, the general solution of ( Eq.88) is an arbitrary linear
combination of a series of even powers ( whose coefficients are determined by a;) and a series of
odd powers ( whose coefficients are determined by a;). It can be shown that the infinite series
defined by the recursion relation ( Eq.90) does not give well-behaved eigenfunctions. Hence as
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Angular Momentum

in the harmonic-oscillator case, we must cause one of the series to break off, its last term being
ayw". We eliminate the other series by setting ap or a; equal to zero, depending on whether k is
odd or even.

Setting the coefficient of ay in €q.90 equal to zero, we have

c=#k + |m)k +|m+1), k=012 o

N
Since | m | takes on the values 0,1,2,....., the quantity k+ | m | takes on the values 0&2, ...... We

therefore defined the quantum number 1 as

I=k+|m| D (92)

and the eigenvalues for the square of the magnitude of angular momentum are

¢ = I + DI, 120,120, . 93)
The magnitude of the orbital angular momentum of a particle is
U=pe+ DI V) ....................... (94)
From ( Eq. 92), it follows that | m | <L T% possible values for m are thus
m= -1, -1+1,-142,....... -1,0,1,,,, -2, (95)

Let us examine the angular-mementum eigenfunctions. From ( Eq. 82) ( Eq.83) (Eq.84) (
Eq.87), (Eq.89) and (Eq.93), the theta ’factor in the eigenfunction is

/-—!m‘ / P
e g a; COS
Sl.m(e) =g !=]EJ
or j':O' 2.

Where the sum is over even or odd values of j, depending on whether 1- | m | is even or odd. The
coefficients ajsatisfy the recursion relation (Eq.90), which using ( Eq.93) becomes

(G + (G + e + )= 0+ D]
Ajy2 = (j+1)(j+2) J

A

The L? and L, eigenfunctions are given by Eq.71 and Eq.80 as
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1 im
Yf"(@, ¢) . S,,,,(G)T(qb) - \/2; Sl.m(e)e P
.................... (98)

P 0. €1 111 1] [ PR

€L

Find Y76, ) and the L? and L+ eigenvalues for (a) I=0 ; (b) 1=1

(a) For 1=0, Eq. 95 gives m=0 and Eq. 96 becomes

S00(0) = @0 (99)
The normalization condition Eq. 79 gives ‘ ) )
j la3|sin 6 ap < | — -
0 = 2’“0! A
9,
= 212
Y
Eq. 98 gives ) Y
0 ! N
Yg B.0)=—— y’
Vaar

~

Obviously, Eq. 100 is an eigenfunction of the operators iz,ix, L, and Lz, Eq.64- Eq. 67
Y, BEq g p q q

For =0, there is no angular de?endence in the eigenfunction; we say that the eigenfunctions
are Spherical symmetric ‘for 1=0.

¢ /Y "
For 1=0 and m=0, Eq. 68, Eq. 69, Eq.74 and Eq. 93 give the L?

eigenvalues asez() and the Lz eigenvalue as b=0.
s %
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- (b) For I = 1, the possible values for m in Eq. 95)are —1,0,and 1. For |m| = 1,(Eq.96)gives
S1‘1|(9) = a, Sinﬂ ........................................ (101 )

ay in (Eq101) is not necessarily the same as dg in( Eq.99)Normalization gives

w |
1= 1010[[ sin? 0 sin 0 d0 = [aﬁ[[ (1 — whdw
0 -1
|ao| = \/5/2

where the substitution w = cos 6 was made. Thus S;,=1 = (3'2/2) sin @ and (Eq.98) gives

y! = (3/8x)sin6 e, Yi'= (3/8m)2sin@e® e (102)
For I = 1 and m = 0(Eq.96)gives Syo = a; €08 8. Normalizing, we find Sip = (3/2)"/% cos 6.
Hence Y? = (3/4m)"/2 cos 6. .
For I = 1, (Eq.93) gives the 12 eigenvalue as 24 for m == 1,0,and 1,(Eq.74)gives the L eigen-
values as —#, 0,and A, respectively.
<L L L L L L L L L L L Ll L gl g gt << ( 7
<<<<<<<<<<;<<<<<<<<<<<<<<<<<<<<<
N

in mathematics, and are associated Legendre

The functions S;,,(6) are well known
tant. The associated Legendre functions

functions multiplied by a normalization cons
P"l(w) are defined by

m| = d 2\|ml/2 df+iml 2 ! o
Piriw) = 7 (1= w?) .dWHM(W ), el =042, (103)

Some associated Legendre functions are
Pi(w) =1 Pi(w) = 3(3w* — 1)

Pi(w) =w Piw) = 3w(l = wA)'2 o i

| Piw) = (L —w)?  Piw) =3~ 3w’
It can be shown that (Pauling and Wilson, page 129)

B el L ™ T
Si.m(0) '[ 2+ .m‘)'] P¥fi(cos@): ;.. «rimrmsss (105)

Equations (105) and (103 ) give the explicit formula for the normalized theta factor

in the angular-momentum eigenfunctions. Using (Eq.105) we construct Table 1, which

gives the theta factor in the apgular—{nomentum eigenfunctions.
The eigenfunctions of i?and L, are called spherical harmonics (or surface har-
monics) and are given by Egs. (105) and (98) as '
[ — |m]' 12 ; i Nk
2+ 1 L_.]_.D—] “Plrl(cos B)e™® e (106)
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=0 Soan - V2
/=1 S,,, i\ﬂ’,cus”

,3\/1smﬂ 1 \{,

- V03 cos’ 0

{=2: !\/ls sin ”C(HB o

SZJ.? i‘\/-—( 60510.-(:0 1 )
e S ﬁ 25m0(50050') /
705:1139

In summary, the one particle orbital angular- momentum‘;]%enfunctlons and eigenvalues are

[(Eq.68), (Eq.69), (Eq.74) and (Eq.93)] A

Lvpe.¢) = 10+ DRYF@H) 01,2, (107)
‘ w

LYo, 4) = mhY7(6:4) LoDy LI e, (108)

Where the eigenfunctions are given by (Eq. 106).Often the symbol m/ is used instead of m for
the L, quantum number. f
N

1
Since [>> | m | , the magnitude [/(/ * 1))V of the orbital angular momentum L is greater than the

magnitude mi: of it: % cgmponent L,, except for [=0. If it were possible to have the angular —
momentum magnitude equal to its z component, this would mean that the x and y components
were zero, ‘and we would have specified all three components of L. However, since the
components of angular momentum do not commute with each other, we cannot do this. The one
exception is when [ is zero. In this case, | L | 2=L%x + L?y+ L’z has zero for its eigenvalue, and
it must be true that allthre components Lx, Ly and Lz have zero eigenvalues. From Eq.12, the
uncertainties in angular — momentum components satisfy

J‘I’*L v dr

AL, AL, > %U.‘P*[L L,y dr|=
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and two similar equations obtained by cycloc permutation. When the eigenvalues of L= Lx and L,

are zero,"'::lF =0,L,¥=0,L,¥ =0,

the right-hand sides of Eq. 109 and the two similar equations
are zero, and having AL, = AL, = AL, = 0 is permitted. But what about the statement in section
1.1 that to have simultaneous eigenfunctions of two operators the operators must commute? The

answer is that this theorem refers to the possibility of having a complete set of eigenfunctions of
one operator be eigenfunctions of the other operator. Thus, even though Lxand L. i(; not

commute, it is possible to have some of the eigenfunctions Lz ( those with /=0=m) be-eigen

-

functions of f‘x.However, it is impossible to have all the L: eigenfunctigl?’s also be

eigenfunctions of L.

Figure 7./Orientation of L

Since we cannot specify Ly and Ly, the vector L can lie anywhere on the surface of a cone whose

axis is the z axis, whose altitude igmﬁv and whose slant height is VI + 1)k (Fig7). The possible
orientations of L. with respect to the z axis for the case £1 are shown in fig 7. For each

YY"

eigenvalue of L2, theie are‘2[+1 different eigenfunctions © /* corresponding to the 2A-1 values of

m. We say that the i eigenvalues are (2f/+1)- fold degenerate. The term degeneracy is
applicable to the eigdwalues of any operator, not just the Hamiltonian.

Of course, there is nothing special about the z axis; all directions of space are equivalent. If we
had .chosen to specify L* and Ly ( rather than L,),we would have gotten the same eigenvalues for

-~ -~

Ly as we found for L,. However, it is easier to solve the L L
a simple form in spherical coordinates , which involve the angle of rotation ¢ about the z-axis.

z eigenvalue equation because “~z has
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