Semester IV

1.3 Angular Momentum of a One —Particle System

It is found previously that the eigenfunction and eigenvalues for the linear -momentum operator

s

B In this section we consider the same problem for the angular momentum of a particle.
P g p

Angular momentum is important in the quantum mechanics of atomic structure. Now we will

discuss the classical mechanics of angular momentum.

Classical Mechanics of One -Particle Angular Momentum: Consider a moving particle of
mass m. It is necessary to set up a Cartesian coordinate system that is fixed in space@et r be the
vector from the origin to the instantaneous position of the particle. We have

r= ixtjytkz e ;(3;

where X, y and z are the particle’s coordinates at a given instant. These ¢oordinates are function
of time, and defining the velocity vector v as the time derivation}of the position vector (section

1.2) A

d_rzidx +jd}' +1cdz y

e dt o d dt A ) ATVTORUSR (33)

Vv

v= dx/dt, vy= dy/dt, V= dZ/dt,
- A A
We defined the particle’s linear momentum vector p by
PEMV T (34)
pPx=mVx py=Mvy m,=mv,

The particle’s angular momentud'l L with respect to the coordinate origin is defined in classical
mechanics as

/N
| I . G (36)

- ; i
L= ]

g Yy X v z

P P Pz

..................................... (37)
Ly =yp.—zpy, Ly =zpx —Xp-, L, =XPy —yPx = e (38)

where (Eq.28) was used. Ly, Lyand L, are the components of L along the x, y and z axes. The
angular- momentum vector L is perpendicular to the plane defined by the particle’s position
vector r and its velocity v (figure 5)
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The torque T acting on a particle is defined as the cross product of r and the force F acting on the
particle : T = r x F. It is readily shown that 7=dL/dt .When thére is no torque acting on the
particle, the rate of change of its angular momentum is zero; that is its angular momentum is
constant ( or conserved). For a planet orbiting the sun, the gravitational force is radially directed.
Since the cross product of two parallel vectors is zero, th@)ls no torque on the planet and its
angular momentum is conserved.

Figure 5: L=1Xp

One —Particle Orbital —Angular Mom%tum Olﬁlﬂtor ( Quantum Mechanical Treatment):

In quantum mechanics, there are two kinds of angular momenta : Orbital angular momentum
results from the motion of a particle through space , and is the analog of the classical —
mechanical quantity L ; spin angular momentum is an intrinsic property of many microscopic
particles and has no classical -mechanical analog. We are now considering only orbital angular
momentum. f

N

a(yl-e)
= —1 e e T
L. dZ O/ (39)
V4
( a a
N L. =—-ithl\z—_-— X7
9 T (40)
Sr
. 9 O e (41)
( Since Py Y , and so on , we do not run into any problem of noncommutativity in

constructing these operators) Using
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Angular Momentum

A " LN J‘\_l -"l._l J‘\_l
=|L|*=LL-L}+L}-1}

The operator are constructed for the square of the angular —-momentum magnitude from the
operators in ( Eqn.39 — Eqn.41).

Since the commutation relations determine which physical quantities can be simultaneously
assigned definite values, we investigate these relations for angular momentum. Opex& ng on

A
some function f( x, y, z) with LF, we have O
,\ of _of )
L.f =iz —=—X— ) &
f ax 02
Opearting on this last equation with L, we get A
e,
- of Of & 9 e
L.L,f = (y-*- + yz —-yx-4£-— g e B
0z 0x dz dy dx dy 9z
R (43)
Similarly , Ay
5 d Nan Y
LJ=~mbE£_Zﬁ)
Z
ay L\
) 4
& azf 2
L), .\'f = —ﬁz(zy—-____ el d f 6‘2)" af azf
. 0x dz . — XY T x——4% )
0x dy 072 ay X2 2z 3y
................... (44)

Subtracting ( 44) fl{n (43) , we have

LLJ-L@Jz_ﬁﬁji_xw)
[L " ) Bx ay
o=@, (45)

Where we used relations such as
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82)" aZf
0Z dx Ox 37

Which are true for well- behaved functions. We could use the same procedure to find [LyL2] and

[L=L] , but we can save time by noting a certain kind of symmetry in (eq. 39 to Eqn.41)=By a

cyclic permutation of X, y and z, we mean replacing x by y, replacing y by z, and r@cing z by
Tat s M A
.. Lk L, : oLy . 1.,
x. If we carry out a cycle permutation in ™, we get ; a cyclic permutation in gives = ;
~ M
Lz is transformed into Lx by cyclic permutation. Hence, by carrying out-two successive cyclic

permutation on ( Eq. 45), we get

Cold=als b=y ENY (47)

'ﬁ"l
Now we evaluate the commutators of L° with each OMz components, using commutator

identities of section 1.1. %
[£21 -Z'k] = [L{? + le’ + A%‘ i“‘]
= [£3, L] + [} L] * [ L2 L]
= [L2 L]+ [L2 L]
o [i'."’ z“] : y + z‘."[i‘}” z‘\‘] as [A b i‘x]z’z * i’z[i‘z' ]:’X]
— L L, — kL L. + L L. + ikl L,
[£5.E,] =0

Sinee a ‘cycbd permutation of X,y and z leaves
two such permutation on ( Eq. 48), we get

[Lz! Lv] =0, [Lj L]=0

AT AT
To which of the quantities L. Lx Lv. Lz can we assign definite values simultaneously ? Because

J“'-' . . . J‘\-'
L+ commutes with each of its components, we can specify an exact value for L* and any one
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component. However, no two components of L commute with each other, so we cannot specify
M

more than one component simultaneously. It is traditional to take Lz as the component of

angular momentum that will be specified along withiz . Note that in specifying L* = | L | 2 we
are not specifying the vector L, only its magnitude. A complete specification of L requires
simultaneous specification of each of its three components, which we usually cannot do. In
classical mechanics when angular momentum is conserved, only its magnitude and ong‘[of its

components are possible.

-
i

A
We could now try to find the eigenvalues and common eigenfunctions of L? and L= by using
the forms for these operators in Cartesian Coordinates. However, we would find that the partial
differential equations obtained would not be separable. For this reason we carry out a
transformation to spherical coordinates ( Figure 6).

A
"‘ 9
r | )
|
| y
I
[
t Y
\ | e
P e Ay o
: <]
~
Figure 6: Spherical Coerdinates
y

The coordinate r is the distance from the origin to point ( x,y,z). The angle 0 is the angle the
vector r makes with the positive z axis. The angle that the projection of r in the xy plane makes
with the positive x axis.is ©.

i
A little trigonometry gives
7
X = rsin 6 cos ¢, y =rsin@sin ¢, zZ=rcosé 50
Z ;
r2=x2+y2+zz. ICOSB: 9 9 N2 tan(i):y/x
(x5 + yo 4 2]
UL e m e (51

To transform the angular-momentum operators to spherical coordinates, we must transform 6/0x,
0/0y and 0/0z into these coordinates.
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To perform this transformation, we use the chain rule. Suppose we have a function of r,0, and ¢:
f(r,0, ¢). If we change the independent variables by substituting

I: r( X’y’Z) b 9: e( X’y7Z) ’(P:(p ( X’y’Z)
into f, we transform it into a function of x,y and z:

f[r( X’yﬁz) ’e( X’yﬁz) 3(p ( X’yﬁz)]zg(xﬁy’z) L
W,

The chain rule tells us how the partial derivative of g(x,y,z) are related to those oﬁr 0, ©). In
fact,

@).-AE) G0 @, o0

(.-, @) (3.3

D AP (53)
( ) ( (a) (éf (a_e) N (af o0\
H2 0.6\9Z/ 1,y 96 r,6\0Z x,y o re 3; X,y
. ~ P (54)
To convert these equation to operator equgtions, we delete fand g to give
() () (), 2
»nzor 66 Y
W2 OB (55)

With similar equations fol"a/é‘y and 0/0z. The task now to evaluate the partial derivatives such as
(Or/0x)y,.. Taking the ‘partial derivative of the first equation in ( Eq.51) with respect to x at
constant y and z, wyave

)
ax _P,z._ 2x = 2?‘ Sln GCOS¢

(‘9’) |
= sin
0x »z 4 cos ¢
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Differentiating r* = x?+ y?+ z* with respect to y and with respect to z, we find

ar P . ar
(3){)x.; =angsing, (ﬂz)x.y HeEF s (57)

From the second equation in (51), we find

; an _ Xz
sin 0 (E)H = gy l
a0 _ cos 0 cos ¢
(F}x)y.z A r (58 h }
Also,
(a_ﬁ) _ cos0sin ¢ (ﬁ) __sing (59)
. ; Y /y.: r S dz Ly r
From tan ¢ = y/x, we find
. ) ; ; /
(%) = qs 5 (@) == : . (2) =0 (60)
ax /., rsin@ ay/., rsiné az /.y

Substituting (5 6 ), (58 ), and (60: ) into (55 '), we find

2 —singcosd 5+ — 9:0”’ 2_=e % ©D)
Similarly, |
% = sinfsin -+ — 9:“’ 22 :;’fn"; 5‘;; (©2)
—'Z: cos&f——s—i:ﬂ% o (©3)
*U

At last we are ready to express the angular -momentum components in spherical coordinates

Su@gﬁq.SO), (Eq.62), and (Eq.63) into (Eq.39), we have

. d sinf d
; 1:1= —-iﬁ[r sin @ sin ¢ | cos 85———7— =

. 9  cosfsing _§_+ cos ¢ _a_)]
_rcosﬂ(smﬁsmcf):_;-i-—T-r-—-aa -—_rsinﬁ %)

;3 liatps v 51 ._a_)
Lx=lﬁ(51“‘f’gg+co”"c°5¢’a¢
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Also , we find

. d s 0
L,= —iﬁ.(couba—é- — cot @ sin q’:;?—(;)

yo N e o) . (65)
-~ a
L,=—ih—
) L (66)

s & 7 ' i 2
By squaring each of L. Ly and L: ang then adding thgi?sciuares, we can construct L
(Eqn.42). The result is

Although the angular —mome{ltygarat’(),rs depend on all three Cartesian coordinates , x,y and
z, they involve only the twc‘éh cal coordinates 0 and .

o34

o
O
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