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1.3 Angular Momentum of a One –Particle System 

It is found previously that the eigenfunction and eigenvalues for the linear –momentum operator 

. In this section we consider the same problem for the angular momentum of a particle. 
Angular momentum is important in the quantum mechanics of atomic structure. Now we will 
discuss the classical mechanics of angular momentum. 

Classical Mechanics of One -Particle Angular Momentum:  Consider a moving particle of 
mass m. It is necessary to set up a Cartesian coordinate system that is fixed in space. Let r be the  
vector from the origin to the instantaneous position of the particle. We have  

 r=  ix+jy+kz   ………………………………(32) 

where x, y and z are the particle’s  coordinates at a given instant. These coordinates are function 
of time, and defining the velocity vector v as the time derivation of the position vector (section 
1.2) 

                        …………………………….. (33) 

                       vx= dx/dt,        vy= dy/dt,          vz= dz/dt 

We defined the particle’s linear momentum  vector  p  by 

                                              p≡mv   ……………………….. (34) 

 px=mvx , py=mvy , mz=mvz  ……………………………..(35) 

The particle’s angular momentum L with respect to the coordinate origin is defined in classical 
mechanics as  

 L≡ r X p  …………………… ……… ( 36) 

                                      ………………………………. (37) 

Lx = ypz –zpy , Ly =zpx –xpz, Lz =xpy –ypx   ……………………………… (38) 

where (Eq.28)  was used. Lx, Ly and  Lz are the components of  L along the x, y and z axes. The 
angular- momentum vector  L  is perpendicular to the plane defined by the particle’s position 
vector r and its velocity v (figure 5) 
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 Figure 5: L= rX p 

The torque τ acting on a particle is defined as the cross product of r and the force F acting on the 
particle : τ ≡ r x F. It is readily shown that τ=dL/dt .When there is no torque  acting on the 
particle, the rate of change of its angular momentum is zero; that is its angular momentum is 
constant ( or conserved). For a planet orbiting the sun, the gravitational force is radially directed. 
Since the cross product of two parallel vectors is zero, there is no torque on the planet and its 
angular momentum is conserved. 

 One –Particle Orbital –Angular Momentum Operator ( Quantum Mechanical Treatment): 

 In quantum mechanics, there are two kinds of angular momenta : Orbital angular momentum  
results from the motion of a particle through space , and is the analog of the classical –
mechanical quantity  L ; spin angular momentum is an intrinsic property of many microscopic 
particles and has no classical –mechanical analog. We are now considering only orbital angular 
momentum. 

                                      …………………………….. (39) 

                         …………………………………(40) 

                                    …………………………. (41) 

( Since     , and so on , we do not run into any problem of noncommutativity in 
constructing these operators) Using  



                        Angular Momentum 
…………………………………………………………………………………………………………………………………………………………………. 

3          Dr.Sandip Kumar Rajak|Dumkal College 

 

Semester IV 

 

                                                   …………………… (42) 

The operator are constructed for the square of the angular –momentum magnitude from the 
operators in  ( Eqn.39 – Eqn.41). 

Since the commutation relations determine which physical quantities can be simultaneously 
assigned definite values, we investigate these relations for angular momentum. Operating on 

some function f( x, y, z) with , we have 

 

Opearting on this last equation with Lx, we get 

…………….( 43) 

Similarly , 

 

   ……………….(44) 

Subtracting ( 44) from (43) , we have 

      …………………………… (45) 

Where we used relations such as  
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                            ………………………………… (46) 

Which are true for well- behaved functions. We could use the same procedure to find  and 

, but we can save time by noting a certain kind of symmetry in (eq. 39 to Eqn.41). By a 
cyclic permutation of x, y and z, we mean replacing x by y, replacing y by z, and replacing z by 

x. If we carry out a cycle permutation in , we get  ; a cyclic permutation in  gives ; 

is transformed into   by cyclic permutation. Hence, by carrying out two successive cyclic 
permutation on ( Eq. 45), we get 

                       …………………………………… (47) 

Now we evaluate the commutators of  with each of its components, using commutator 
identities of section 1.1. 

 

      ………………………(48) 

Since a  cyclic permutation of x,y and z leaves  unchanged, if we carry out 
two such permutation on ( Eq. 48), we get 

           ……………………………………. (49) 

To which of the quantities  can we assign definite values simultaneously ? Because 

 commutes with each of its components, we can specify an exact value for  and any one 
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component. However, no two components of  commute with each other, so we cannot specify 

more than one component simultaneously. It is traditional to take  as the component of 

angular momentum that will be specified along with . Note that in specifying L2 =│L│2 we 
are not specifying the vector L, only its magnitude. A complete specification of L requires 
simultaneous specification of each of its three components, which we usually cannot do.  In 
classical mechanics when angular momentum is conserved, only its magnitude and one of its 
components are possible. 

We could now try  to find the eigenvalues and common eigenfunctions of  and  by using 
the forms for these operators in Cartesian Coordinates. However, we would find that the partial 
differential equations obtained would not be separable. For this reason we carry out a 
transformation to spherical coordinates ( Figure 6). 

 

Figure 6: Spherical Coerdinates 

The coordinate r is the distance from the origin to point ( x,y,z). The angle θ is the angle the 
vector r makes with the positive z axis. The angle that the projection of  r in the xy plane makes 
with the positive  x axis is φ.      

A little trigonometry gives 

….. (50) 

       …………..(51) 

To transform the angular-momentum operators to spherical coordinates, we must transform ∂/∂x, 
∂/∂y and ∂/∂z into these coordinates. 

……………………………………………………………………………………………….. 
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To perform this transformation, we use the chain rule. Suppose we have a function of r,θ, and φ: 
f(r,θ, φ). If we change the independent variables by substituting 

r= r( x,y,z) , θ= θ( x,y,z) ,φ=φ ( x,y,z) 

into f, we transform it into a function of x,y and z: 

f[r( x,y,z) ,θ( x,y,z) ,φ ( x,y,z)]=g(x,y,z) 

The chain rule tells us how the partial derivative of g(x,y,z) are related to those of f(r,θ, φ). In 
fact, 

…………. (52) 

………………….(53) 

…………………. (54) 

To convert these equation to operator equations, we delete f and g to give 

…………………………….(55) 

With similar equations for ∂/∂y and ∂/∂z. The task now to evaluate the partial derivatives such as 
(∂r/∂x)y,z.. Taking the partial derivative of the first equation in ( Eq.51) with respect to x at 
constant y and z, we have 

  …………………………………..( 56) 



                        Angular Momentum 
…………………………………………………………………………………………………………………………………………………………………. 

7          Dr.Sandip Kumar Rajak|Dumkal College 

 

Semester IV 

 

 

………………………………………………………………………………………………………………………………………. 

At last we are ready to express the angular –momentum components in spherical coordinates  

Substituting (Eq.50), (Eq.62), and (Eq.63) into (Eq.39), we have 

 

 

 

 

………(64) 
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Also , we find  

  

 

 

 

 

 

By squaring each of  and then adding their squares, we can construct   
(Eqn.42). The result is  

 

 

 

 

Although the angular –momentum operators depend on all three Cartesian coordinates , x,y and 
z, they involve only the two spherical coordinates θ and φ. 

 

 

 

 

 

 

 

 

…………. (65) 

                   ............................. (66) 

…………. (67) 


