STUDY MATERIALS

Qualitative Analysis of a Single Solid Organic Compound Manual for Practical

> YASIN NUREE Department of Chemistry Dumkal College

Department of Chemistry Dumkal College Basantapur, Dumkal Murshidabad

Sample Number:

Physical Characteristics:

(i) Colour:

(ii) Texture:

(iii) Odour:

Detection of Special Elements (N, Cl, S) by Lassaigne's Method: Lassaigne's Test: A pea sized dry and clean sodium was taken in a fusion tube and heated gently until it melted with a shiny surface. A pinch of the sample was added to it and the mixture was heated gently and then strongly to red hot on a non-luminous flame for about two minutes. Finally the fusion tube was carefully plunged in a mortar containing distilled water (8-10 mL). The mixture was ground thoroughly by a pestle and filtered. The following experiments were performed with this aqueous colourless filtrate.

OBSERVATION	INFERENCE
A deep blue solution	Nitrogen present.
or precipitate	
Purple colouration	Sulphur present
Curdy white	Chlorine present.
precipitate. Soluble,	
but reappeared on	
acidification with	
dilute HNO ₃ .	
	Purple colouration Curdy white precipitate. Soluble, but reappeared on acidification with

Departmen	t of Chemis	istry			
Dumkal College					
Basanta	our, Dumka	al			
Mur	shidabad				
If N and/or S present: A portion of the	Same ob	oservation a	s Same	inference	as
filtrate was acidified with concentrated	above		above.		
HNO ₃ and gently boiled till the volume of					
the solution becomes half. It was then					
cooled and AgNO ₃ solution is added. To the					
precipitate dilute NH4OH was added.					

Middleton's test: Use of Zn & Na₂CO₃ mixture instead of metallic Na [An intimate mixture of Zn dust and Na₂CO₃ (2:3 by weight) may be stored in a bottle.] A pinch of organic sample and the above mixture (200 mg) was heated gently and then strongly to red hot on a non-luminous flame for about three minutes. Then the fusion tube was plunged in a mortar containing distilled water (6-7 mL). The mixture was ground thoroughly by a pestle and filtered. The following experiments were performed with this aqueous filtrate: [When an organic compound is heated with a mixture of zinc powder and Na₂CO₃, the nitrogen and chlorine are converted into NaCN and NaCl respectively, and the sulphur into ZnS (insoluble in water). NaCN and NaCl are extracted with water and detected as in Lassaigne's method, whilst ZnS in the residue is decomposed with dilute HCl and H₂S evolved is identified with lead acetate paper which forms black PbS.]

Solubility Classification

Observations to be made at room temperature

Water	5%	5%	5%	Conclusion	
	HCI	NaOH	NaHCO3		
+	NP	NP	NP	Polar compound: low MW aliphatic acids, polyphenols, salts.	
_	+	-	-	Basic: amines	
_	_	+	+	Strongly acidic: acids, nitrophenols	

(scale: 100 mg of sample in 3 mL of solvent)

			_		
Department of Chemistry					
Dumkal College					
	Basantapur, Dumkal				
			Mur	shidabad	
_	_	+	_	Weakly acidic: phenols, imide	
_	+	+	+	Bipolar compounds; may contain both amine	
				and carboxylic acid groups, e.g. amino acids,	
				sulphanilic acids etc.	
_	_	_	_	Neutral compounds:	
				a) carbonyl (if N absent)	
				b) Nitro/amide (if N present)	
'+' mea	'+' means soluble; '-' means insoluble; 'NP' means not performed				

If the sample is soluble in water, then no need to check the solubility in all other aqueous solvents mentioned above. Report 'NP' (Not Performed) in the columns of other solvents. Detection of Functional Groups by Systematic Chemical Analysis: [If nitrogen is present as special element then tests for all the functional groups must be performed.] If nitrogen is absent as special element, then report as given below: "Since nitrogen is absent as special element, tests for nitrogen containing functional groups aromatic amino (-NH₂), aromatic nitro (-NO₂), carboxamide (-CONH₂) and imide (-CONHCO-) are not performed". [Perform only the tests for non-nitrogenous functional groups.]

Tests for Nitrogen Containing Functional Groups

(aromatic – NH₂, aromatic – NO₂, –CONH₂ and –HNCONH-)

Experiment	Observation	Inference
Test for aromatic -NH ₂ (azo-dye test):	Red / orange azo-dye	Aromatic –NH ₂
To 1 mL dilute HCl solution / suspension		present
of the sample, 1 mL 2% NaNO ₂ solution		
was added under ice cold condition. This		
cooled diazotized solution was then added		
to a previously cooled alkaline solution of		

Department of Chemistry			
Dumkal College Basantapur, Dumkal			
Mu	rshidabad	1	
β-naphthol.			
Test for aromatic -NO ₂ (in absence of	Red / orange azo-dye	Aromatic –NO ₂	
aromatic –NH ₂) Reduction followed by		present	
azo-dye test: A few pieces of Zn or Sn			
granules were added to the sample (~50			
mg) in concentrated HCl (2 mL). The			
mixture was boiled gently for 2 minutes. It			
was then cooled and filtered and diluted			
with water. Azo-dye test as described			
above was performed with it.			
Test for aromatic –NO ₂ (in presence of	A grey / black	Aromatic –NO ₂	
aromatic –NH ₂) However, Mulliken and	precipitate or silver	present	
Barker test can be performed for aromatic	mirror		
$-NO_2$ group whether or not aromatic $-NH_2$			
group is present in the given sample.			
Mulliken and Barker test: To a mixture of			
sample (~50 mg), Zn dust (100 mg) and			
solid NH4Cl (100 mg) 50% aqueous			
ethanol (3 mL) was added. The mixture			
was boiled gently in a water bath for 5			
minutes and then filtered into freshly			
prepared Tollens' reagent (2 mL).			
Test for amide (-CONH ₂) and imide: A	Smell of NH ₃ was	Amide or imide	
mixture of the sample (~50 mg), 2-3	perceived and the	present	
NaOH / KOH pellets and a few drops of	evolved vapour turned		
water was heated strongly.	phenolphthalein paper		
	temporarily pink.		

Department of Chemistry Dumkal College Basantapur, Dumkal Murshidabad

Preparation of Tollens' reagent: Ag(NH₃)₂OH: A few drops of dilute NaOH solution are added to 1-2 mL of AgNO₃ solution. The resulting precipitate is then dissolved by adding requisite amount of NH₄OH solution.

Tests for Non-nitrogenous Functional Groups

(phenolic –OH, >CO, –COOH)

Experiment	Observation	Inference
Alcoholic solution of the sample is tested	Blue litmus paper turns	strongly acidic
with moist blue litmus paper.	red.	functionality (-
		COOH) present.
Test for carboxylic acid (-COOH):	Effervescence of CO ₂	Acidic functionality
Sample or its alcoholic solution was added	was observed	(-COOH) present.
to a saturated solution of NaHCO ₃ .	Characteristic fruity	Carboxylic acid
Esterification: A solution of the sample in	smell of ester was	group (–COOH)
dehydrated alcohol (2 mL) and 2 drops of	perceived.	present.
concentrated H ₂ SO ₄ was warmed on a		
water bath for 5 minutes. It was cooled		
and then poured cautiously in a beaker		
containing 5% solution of NaHCO3 (10-		
15 mL).		
Test fo <mark>r carbonyl (>CO or -CHO)</mark>	Orange / yellow	Carbonyl group
(Aldehyde/Ketone): 2,4-	crystalline precipitate.	(>CO) present.
Dinitrophenylhydrazine (2,4-DNP)		Distinction between
reagent (Brady's reagent) was added to a		aldehyde & ketone
saturated alcoholic solution of the sample		may be done by
(2 mL). The mixture was shaken		Tollens' reagent
vigorously for few minutes and then the		
inner wall of the test tube was scratched		

Department of Chemistry				
Dumkal College				
Basantapur, Dumkal Murshidabad				
with a glass rod.				
Test for phenolic –OH group:	Permanent or transient	Phenolic –OH		
(a) To an alcoholic/aqueous solution of the	purple/red/blue/violet/	group present.		
sample, few drops of neutral FeCl ₃	green colouration. Red	Phenolic –OH		
solution is added.	precipitate or colouration	group present		
solution is added.	of azo-dye observed.			
(b) Back Dye Test: To a solution of 1 drop				
of aniline in dilute HCl, 1 mL 2% NaNO ₂				
solution was added under ice cold				
condition. The resulting solution was then				
added to cold alkaline solution of the				
sample. [Any one of the above tests, if				
positive, indicates the presence of		P		
phenolic –OH group. To show the				
absence,, both tests must be performed.]				

[According to the syllabus, however, **Only One Test For Each Functional Group** is to be reported]

Solid Organic Compounds for Qualitative Analysis

Succinic acid Benzoic acid Phenylacetic acid Phthalic acid Cinnamic acid Anisic acid o-Chlorobenzoic acid Sulphanilic acid Resorcinol Hydroquinone 2-Naphthol Salicylic acid p-Hydroxybenzoic acid Vanillin Benzil Benzophenone Benzoin p-Chlorobenzaldehyde p-Hydroxybenzaldehyde p-Nitrobenzaldehyde p-Toluidine p-Anisidine Aniline hydrochloride p-Chloroaniline m-Dinitrobenzene p-Nitrotoluene p-Nitrophenol p-Nitroaniline o-Nitroaniline m-Nitroaniline p-Nitrobenzoic caid m-Nitrobenzoic acid p-Aminobenzoic caid Benzamide Salicylamide Phthalamide Phthalimide Sulphanilamide Urea Department of Chemistry Dumkal College Basantapur, Dumkal Murshidabad

Reference Books:

1. Vogel, A. I. Elementary Practical Organic Chemistry, Part 2: Qualitative Organic Analysis, CBS Publishers and Distributors.

2. University Hand Book of Undergraduate Chemistry Experiments, edited by Mukherjee,

G. N. University of Calcutta, 2003.

3. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009).

4. Furniss, B.S., Hannaford, A.J., Smith, P.W.G., Tatchell, A.R. Practical Organic Chemistry, 5th Ed., Pearson (2012).

5. Clarke, H. T., A Handbook of Organic Analysis (Qualitative and Quantitative), Fourth Edition, CBS Publishers and Distributors (2007).

6. Practical Workbook Chemistry (Honours), UGBS, Chemistry, University of Calcutta, 2015.