STUDY MATERIAL

Dumkal College Basantapur Dumkal

<u>Topic: Rearrangement reaction : Pinacol-Pinacolone rearrangement</u>

Course Code: CHEMHT-10

Semester: IV (Hons)

Name of the Teacher: Md Muttakin Sarkar

Name of the Department: Chemistry

Pinacol-Pinacolone Rearrangement

Acid catalyzed rearrangement of 1,2-diol into oxo-conpounds (aldehyde / ketone).

$$R_1$$
 Protic or Lewis Acid R_1 R_1 R_2 R_2 R_2 R_2 R_2

R1-2 = H, Alkyl, Aryl, Acyl

Acids: 20%H2SO4, AcOH, BF3.Et2O

The name originated from classical example of conversion of Pinacol to Pinacolone.

MECHANISM:

- Protonation of hydroxyl group to form a carbocation
- 1,2-shift of: H,: R or: Ar to form a more stable cation (Rearrangement)
- Deprotonation to form the final product

Mechanism of Pinacol Rearrangement

Step 1: Protonation of the hydroxyl group by the acid.

HO HO:

$$H_3C-C-C-CH_3$$
 $H_3C-C-C-CH_3$
 H_3C
 $H_$

Step 2: Removal of water from the compound to form a carbocation.

$$HO$$
 $\nearrow OH_2^{\oplus}$ HO
 $H_3C-C-C-CH_3$ \longrightarrow $H_3C-C-C-CH_3$ $+$ H_2O
 H_3C CH_3 H_3C CH_3

Step 3: Shifting of the methyl group to the positively charged carbon.

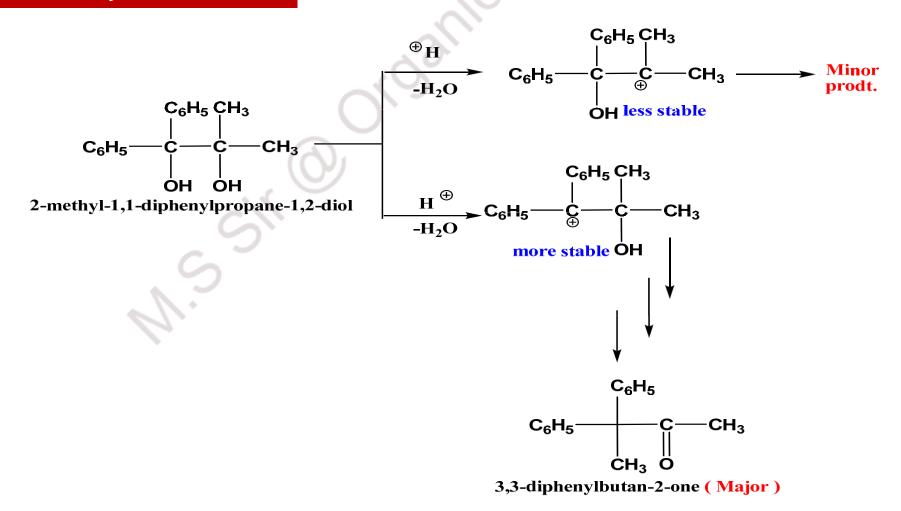
$$HO$$
 $H_3C-C-C-CH_3$
 $H_3C-C-C-CH_3$
 $H_3C-C-C-CH_3$
 CH_3

Step 4: Deprotonation of the oxygen which is bonded to carbon.

Evidences For Carbocation Intermediate:

1. Isotopic Labelling Experiment:

Intramolecularity:


Modified Mechanism: T. S. Is formed

- 1.If migrating group is chiral then retention of configuration occurs
- 2. No cross product is formed when the reaction is carried out in presence of two different pinacol.

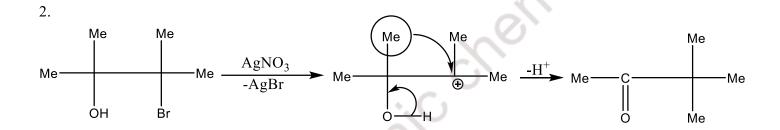
Pinacol - Pinacolone Rearrangement with Asymmetrical 1,2- Diols

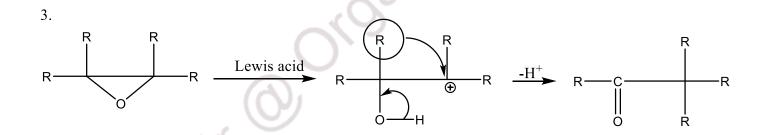
- 1 .Stability of carbocation
- 2. Migratory aptitude of groups

1 .Stability of carbocation:

2.Migratory Aptitude of Groups:

Different groups have different migratory aptitude.


- 1. H > Ar > Alkyl
- 2. 3° > 2° > 1° > CH₃
- 3. Aryl > H > vinyl (alkenyl) > Alkyl
- 4. 4-OMe-Ph > 4-Me-Ph > 2-OMe-Ph > Ph > 4-Cl-Ph etc.


If there is possibility of migration of H and alkyl group; it is H which migrates preferably ,as it gives the formation of stabler carbocation.

Some Examples

Semipinacol rearrangement

1. β – amino alcohol undergoes semi – pinacol rearrangement. Here carbocation is generated by diazotization followed by loss of N₂.

Reference Books

- 1. Organic name reaction by Jie Jack Li.
- 2. Clayden, J., Greeves, N., Warren, S., Organic Chemistry, Second edition, Oxford University Press 2012.
- 3. Harwood, L. M., Polar Rearrangements, Oxford Chemistry Primer, Oxford University Press..