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Rotational Spectra 

Like all other forms of energy, rotational energy is quantized: this means that a molecule cannot 
have any arbitrary amount of rotational energy (i.e. any arbitrary value of angular momentum) 
but its energy is limited to certain definite values depending on the shape and size of the 
molecule concerned. The permitted energy values— the so-called rotational energy levels—may 
in principle be calculated for any molecule by solving Schrodinger equation for the system 
represented by that molecule.  

The Rigid Diatomic Molecule 

The simplest of all linear molecules shown in the Figure 3. Masses m1 and m2 are joined by a 
rigid bar (the bond) whose length is  

 r0= r1+r2       ……………………………(1) 

The molecule rotates end-over -end about a point C, the centre of gravity: this is defined by the 
moment, or balancing, equation: 

 m1 r1 = m2 r2  ……………………………(2) 

 

 

Figure3: A rigid diatomic molecule treated as two masses, m1, and m2, joined by a rigid bar of 
length r0= r1+r2 

The moment of inertia about C is defined by:  

 I=m1r
2

1 + m2r
2

2 

 = m2r2r1+ m1r2r1       (From Eq.2) 

 = r2r1(m1+ m2) 
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However form Eq.1 and Eq.2: 

 m1r1 = m2r2= m2(r0 – r1) 

Therefore, 

  

Replacing r values  in Eq.2  

 ……………..(3) 

Where 

                                     

                    and µ is called reduced mass of the system. 

Equation (3) defines the moment of inertia conveniently in terms of the atomic masses and the 
bond length. 

The Schrodinger equation for the rigid rotator is given by 

       …………………………….(4) 

By the use of the Schrodinger equation it may be shown that the rotational energy levels allowed 
to the rigid diatomic molecule are given by the expression: 

  

 

 ………..(5) 

Where J=0,1,2,………
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In this expression h is Planck’s constant, and I is the moment of inertia, either IB or IC, since both 
are equal. The quantity J, which can take integral values from zero upwards, is called the 
rotational quantum number: its restriction to integral values arises directly out of the solution to 
the Schrodinger equation and is by no means arbitrary, and it is this restriction which effectively 
allows only certain discrete rotational energy level to the molecule. 

Eq. (5) expressed the allowed energies in joule; but differences of energy is more interested in 
the present discussion or, more particularly, in the corresponding frequency, υ=ΔΕ/h Hz, or wave 
number, ῡ= ΔΕ/hc cm-1, of the radiation emitted or absorbed as a consequence of changes 
between energy levels. In the rotational region spectra are usually discussed in terms of the 
wavenumber, so it is useful to consider energies expressed in these units. 

         ………………………………..(6) 

Where velocity of light, is here expressed in cm s-1, since the unit of wavenumber is reciprocal 
centimeters. 

Eq.(6) is usually abbreviated to  

 

  

 

 

 

 

 

in which IB is explicitly used for moment of inertia. IC may be used instead of IB  and a rotational 
constant as C, but the notation of Eq. (7) is conventional. 

………………………………..(7) 

Where B is  the rotational constant, is given  by  

…………………………………………(8) 
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Figure 4: The allowed rotational energies of a rigid diatomic molecule 

From Eq.(7), the allowed energy level can be shown diagrammatically as Figure 4. 

Plainly for J=0, as εJ =0,it can be understood that the molecule is not rotating at all. For J=1, the 
rotational energy is ε1 = 2B and a rotating molecule then has its lowest angular momentum. With 
the continuance of the process of calculation εJ with increasing J values, it can be seen that in 
principle, there is no limit to the rotational energy the molecule may have. In practice, of course, 
there comes a point at which the centrifugal force of rapid rotating diatomic molecule is 
greater than the strength of the bond, and the molecule is disrupted, but this point is not 
reached at normal temperature. 

In order to discuss the spectrum, it need to consider the differences between the energy levels. 

Let incident radiation be absorbed by the molecule in the J=0 state ( the ground rotational  state, 
in which no rotation occurs) to raise it to the J=1 state. 
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Plainly the energy absorbed will be : 

 

 

 

In general, to raise the molecule from the state J to state J+1: 

 ῡJ=1 →J=2= εJ=2 — εJ=1 =6B — 2B=4Bcm-1…………………(10) 

ῡJ→J+1=B(J+1)(J+2)  — BJ(J+1)     cm-1 

= B[J2+3J+2-(J2+J)] 

or,  ῡJ →J+1=2B (J+1)cm-1
 ………………………………(11) 

 

Figure 5: Allowed transition between the energy levels of a rigid diatomic 
molecule and the spectrum which arises from them 

εJ=1 — εJ=0 =2B — 0=2B cm-1

and, therefore, 

ῡJ=0 →J=1=2B cm-1
     ……………………………(9) 
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Thus a stepwise raising of the rotational energy results in an absorption spectrum consisting of 
lines at 2B,4B, 6B…..cm-1, while a similar lowering would result in an identical emission 
spectrum. This is shown in the foot of the Figure 5. 

 In deriving this pattern it is assumed that a transition can occur from a 
particular level only to its immediate neighbor, either above or below: it does not consider the 
sequence of transition J=0→J=2→J=4…… In fact, a rather sophisticated application of the 
Schrodinger wave equation shows that, for this molecule, it need to consider transitions in which 
J changes by one unit— all other transitions being spectroscopically forbidden. Such a result is 
called a selection rule, and the selection rule for the rigid diatomic rotator is  

Selection rule: ΔJ=±1       …………………………………(12) 

Thus Eq.(11) gives the whole spectrum to be expected from such a molecule. 

 Of course, only if the molecule is asymmetric (heteronuclear) will this 
spectrum be observed, since if it is homonuclear there will be no dipole component change 
during the rotation, and hence no interaction with radiation. Thus molecules such as HCl and CO 
will show a rotational spectrum, while N2 and O2 will not. Remember, also that rotation about 
the bond axis was rejected for two reasons. Firstly, the moment of inertia is very small about the 
bond. So, applying Eq.(5) and Eq.(6) it can be seen that energy levels are extremely widely 
spaced: this mean that a molecule requires a great deal of energy to be raised from the J=0 to the 
J=1 state, and such transition do not occur under normal spectroscopic conditions. Thus diatomic 
(and all linear) molecules are in the J =0 state for rotation about the bond axis, and they may be 
said to be not rotating. Secondly, even if such a transition should occur, there will be no dipole 
change and hence no spectrum. 

Application: Observed that the first line (J=0) in the rotation spectrum of 
carbon monoxide as 3.84235 cm-1. Now, we have to determine the moment of 
inertia and hence the bond length.   

Ans:  ῡ0→1=3.84235cm-1                  (note: This is equal to 2B) 

                           or  B=1.92118 cm-1 

Now from the equation, B=h/8π2Ic can be rewrite as  

 I= h/8π2Bc  

 ICO = =  

     

       6.626x10-34

8π2 x 2.99793x1010 xB 

27.9907x10-47 

     B 
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=14.5695X10-47 kg m2 

where the velocity of light in cm-1, since B is in cm-1. However, the moment of inertia is µr2 and , 
knowing the relative atomic weight (H=1.0080) to be C=12.000, O=15.9994, and the absolute 
mass of the hydrogen atom to be 1.673x10-27kg, we can calculate the masses of carbon and 
oxygen, respectively, as 19.92168 and 26.56136 x10-27kg. The reduced mass is then; 

 

 

µ=      =11.38365x10-27 kg 

 

Hence,  r2=I/ µ=1.279910-20m2 

and  r=0.1131nm (or 1.131Å) 

 

 

 

 

 

 

 

 

 

 

 

 

 

19.921x25.561x10-54

(19.921+25.561)x10-27

Note: How to get the value 19.92168 as the mass of carbon? 

Ans: C=12.000, then , mass of carbon =12/(6.023x1023)g=1.992168x10-23g=19.9216810-27kg 

 


