

Angular Momentum

……….

We know from our previous discussion that the commutator \hat{A} and \hat{B} , is defined as $[\hat{A}, \hat{B}] \equiv \hat{A} \hat{B} - \hat{B} \hat{A}$

The following commutator identities are helpful in evaluating commutators:

[Â ,]= - [,Â] ………………………..(1) [Â,Ân]= 0 , n=1,2,3… …………………(2) $[k\hat{A}, \hat{B}]=[A, k\hat{B}]=k[\hat{A}, \hat{B}]$ …………………(3) $[\hat{A}, \hat{B}+\hat{C}]=[\hat{A}, \hat{B}]+[\hat{A}, \hat{C}], \quad [\hat{A}+\hat{B}, \hat{C}]=[\hat{A}, \hat{C}]+[\hat{B}, \hat{C}].$ [Â , Ƙ]= [Â @Ƙ >ÆƘ@ [Â Ƙ@ >ÆƘ@ +Â[Ƙ@«««««

Where k is constant and the operator are assumed to be linear.

Example:

1. $[\partial/\partial x,x]=1$

Proof: $\left[\partial/\partial x, x\right]f(x) = \partial/\partial x \{x. f(x)\} - x\partial/\partial x \{f(x)\}$

$$
=xf'(x)+f(x)-xf'(x)=1. f(x)
$$

So,
$$
\left[\partial/\partial x, x\right]f(x) = 1.f(x)
$$

Or, $[\partial/\partial x, x]=1$ (proved)

2.

$$
[\hat{x}, \hat{p}_x] = i \hbar
$$

Proof: $[\hat{x}, \hat{p}_x] = [x, \frac{\hbar}{i} \partial/\partial x] = \frac{\hbar}{i} [x, \partial/\partial x]$

$$
= -\frac{\hbar}{i} [\partial/\partial x, x] = -\frac{\hbar}{i}
$$

 $[\hat{x}, \hat{p}_x] = i \hbar$

Angular Momentum

……….

3.

$$
[\hat{x}, \hat{p}^{2}] = 2\hat{h}^{2} \frac{\partial}{\partial x}
$$

\nProof:
$$
[\hat{x}, \hat{p}^{2}] = [\hat{x}, \hat{p}^{2}] \hat{p}^{2} + \hat{p}^{2} \hat{k} \hat{k} \hat{p}^{2} \hat{k}
$$
\n
$$
= i\hat{h}^{2} \frac{\hat{h}}{i} \frac{\partial}{\partial x} + \frac{\hat{h}^{2}}{i} \frac{\partial}{\partial x} + \hat{h}^{2} \frac{\partial}{\
$$

The above commutators have important physical consequences . Since \mathbb{R} , \hat{p} \neq 0, we cannot expect the state function to be simultaneously an eigenfunction of \hat{x} and of \hat{R} . Hence we cannot simultaneously assign definite values to x and p_x , in agreement with the uncertinity principle. Since \hat{x} and \hat{H} do not commute, we cannot expect to assign definite values to the energy and x coordinate at the same time . A stationary state (which has a definite energy) shows a spread of possible values for x, the probabilities for observing various values of x being given by Born postulate.

For a state function ψ that is not an eigen function of of \hat{A} , we get various possible outcomes when we measure A in identical system. We want some measure of the of the spread or dispersion in the set of observed values A_i . If $\langle A \rangle$ is the average of these values, then the deviation of each measurement from the average is $A_i < A >$. If we averaged all the deviations, we would get zero, since positive and negative deviations would cancel. Hence to make all